• Title/Summary/Keyword: Flight Stability

Search Result 344, Processing Time 0.023 seconds

Eigenstructure Assignment Considering Probability of Instability with Flight Control Application

  • Seo, Young-Bong;Choi, Jae-Weon
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.607-613
    • /
    • 2007
  • Eigenstructure assignment provides the advantage of allowing great flexibility in shaping the closed-loop system responses by allowing specification of closed-loop eigenvalues and corresponding eigenvectors. But, the general eigenstructure assignment methodologies cannot guarantee stability robustness to parameter variations of a system. In this paper, we present a novel method that has the capability of exact assignment of an eigenstructure which can consider the probability of instability for LTI (Linear Time-Invariant) systems. The probability of instability of an LTI system is determined by the probability distributions of the closed-loop eigenvalues. The stability region for the system is made probabilistically based upon the Monte Carlo evaluations. The proposed control design method is applied to design a flight control system with probabilistic parameter variations to confirm the usefulness of the method.

The 3D Numerical Analysis on the Predictions of Flight Stability at Take-off and Landing (Crosswind 60°) (이.착륙 비행 안정성 예측을 위한 3차원 수치해석(측풍 60° 방향))

  • Sheen, Dong-Jin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.1
    • /
    • pp.94-102
    • /
    • 2012
  • The aim of this paper is to research the change in the turbulent flow and the AOA occurred by $60^{\circ}$ crosswind to the direction of runway through the three-dimensional numerical analysis and to predict the take-off and landing flight stability. As a result, the maximum amplitude of AOA variation on runway reached $4.88^{\circ}$ within 7 second because of the wake formed by the constructions in the vicinity of the airport, and the overall effects appeared as an irregular aperiodic forms. Additionally, it was observed that the layout and shape of the buildings effected on the strength of turbulence directly, and the rapid flow generated between the buildings changed into stronger wake and eventually expected that the flow raises serious take-off and landing flight instability.

A Comparison Study on the Semi-empirical Analysis Approach for the Flight Characteristics of a Light Airplane (경비행기의 비행특성 분석 및 준경험적 분석 방법 비교)

  • Lee, Jung-hoon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.1-9
    • /
    • 2022
  • In this study, for development of the MDO (Multi Disciplinary Optimization) framework, the flight dynamic characteristic parameters of the ChangGong-91, a light aircraft, were extracted by an analytical method based on various semi-empirical methods, and the flight test method was compared and evaluated. The semi-empirical analysis methods for comparative subjects were the Perkins method, McCormick method, and Smetana method. The major stability/control derivatives and dynamic factors were calculated, using each method. As the comparison criteria, the flight test derivative estimates and dynamic factors were processed, using the output error method. Additionally, the flight characteristics of the light aircraft were analyzed and evaluated according to the provisions of the Korean Airworthiness Standard (KAS) of the Ministry of Land, Infrastructure and Transport, and MIL-F-8785C for the U.S. military.

The application of eigenstructure assignment to flight control system (비행제어계에 대한 고유구조 할당의 응용)

  • 박노웅;박정일;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.603-607
    • /
    • 1988
  • On this paper, the application of Eiganstructure assignment to flight control system design is presents. Both output feedback and constrained output feedback are considered. The computer implimentation of the algorithm is discussed including the utilization of real arithmetic for complex conjugate eigenvalue. And the example include a stability augementation system, an autopilot decoupled mode control.

  • PDF

Sensitivity analysis of the stability characteristics (안정특성치 민감도 분석)

  • 고준수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.256-261
    • /
    • 1986
  • The sensitiveness of the stability characteristics of the aircraft with respect to changes in the stability parameters as predicted by the linear analysis is applied for the two aerodynamic models proposed. The results give the detailed information for an aircraft dynamic behavior especially at complicated flight envelope.

  • PDF

Variable stability system control law development for in-flight simulation of pitch/roll/yaw rate and normal load

  • Ko, Joon Soo;Park, Sungsu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.412-418
    • /
    • 2014
  • This paper describes the development of variable stability system (VSS) control laws for the KFA-i to simulate the dynamics of KFA-m aircraft. The KFA-i is a single engine, Class IV aircraft and was selected as an in-flight simulator (IFS) aircraft, whereas the KFA-m is a simulated aircraft that is based on the F-16 aircraft. A 6-DoF math model of KFA-i aircraft was developed, linearized, and separated into longitudinal and lateral motion for VSS control law synthesis. The KFA-i aircraft has five primary control surfaces: two flaperons, two all movable horizontal tails, and one rudder. Flaperons are used for load control, the horizontal tails are used for pitch and roll rate control, and the rudder is used for yaw rate control. The developed VSS control law can simulate four parameters of the KFA-m aircraft simultaneously, such as pitch, roll, yaw rates, and load. The simulation results show that KFA-i follows the responses of KFA-m with high accuracy.

Robust Autopilot Design for Nonsquare Flight Systems (비정방 비행 시스템에 대한 강인한 자동조종장치 설계)

  • 김종식;정성훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1123-1131
    • /
    • 1993
  • A robust controller is proposed to design a flight autopilot for lateral motion control. The control system has two control loops in order to meet the performance and to maintain the stability-robustness for a nonsquare flight system with uncertain aerodynamic variations and disturbance. One is designed via linear quadratic Gaussian with loop transfer recovery(LQG/LTR) design methodology for the inner loop. The other is designed via proportional controller design method for the outer loop. To show the effectiveness of this control system, it is compared with the LQG/LTR control system for a square flight system and is analyzed for the performance/stability-robustness to model uncertainties and disturbance via wind gusts. It is found that the proposed control system has good heading command-following performance under allowable sideslip angle in spite of model uncertainties and disturbance.

Numerical simulation of the aerodynamic characteristics on the grid-fin adapted sub-munition with low aspect ratio under transonic condition (그리드핀을 적용한 작은 세장비를 갖는 자탄의 천음속 공력특성 전산해석)

  • Yoo, Jae-Hun;Kim, Chang Kee;Choi, Yoon Jeong;Lim, Ye Seul
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.23-33
    • /
    • 2019
  • A sub-munition which has low aspect ratio does not have flight stability and control of drag force under free-fall condition. In order to satisfy those problems, fin, which is called grid-fin, is designed instead of conventional flight fins and adapted to the sub-munition. The base model of the sub-munition is firstly set and numerical simulation of the model is conducted under transonic condition that is free-fall range of the sub-munition. Wind test is secondly performed to verify the simulation result. The result shows that grid fin adapted sub-munition has high drag force, but the flight stability is still needed. In order to enhance the flight stability, two additional grid-fins are designed which modify web-thickness and numerical simulations of modified models are conducted. As the results, the thinnest web-thickness grid-fin has the highest flight stability and still maintains high drag coefficient. Based on these results, design of grid-fin adapted sub-munition is completed, the path trajectory of the sub-munition can be predicted with acquired aerodynamic datum and it is expected that grid fin can be used to various shape of the flight vehicle and bomb.

Model Following flight Control System Design (준 슬라이딩 모드 제어 기법을 이용한 모델 추종 비행제어 시스템 설계)

  • Choe, Dong-Gyun;Kim, Shin;Kim, Jong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1133-1145
    • /
    • 2000
  • In this paper a model following flight control system design using the discrete time quasi-sliding mode control method is described. The quasi-sliding mode is represented as the sliding mode band, not as the sliding surface. The quasi-sliding mode control is composed of the equivalent control for the nominal system without uncertainties and disturbances and the additive control compensating the uncertainties and disturbances. The linearized plant on the equilibrium point is used in designing a flight control system and the stability conditions are proposed for the model uncertainties. Pseudo-state feedback control which uses the model variables for the unmeasured states is proposed. The proposed method is applied to the design of the roll attitude and pitch load factor control of a bank-to-turn missile. The performance is verified through the nonlinear six degrees of freedom flight simulation.

  • PDF

Nonlinear Adaptive Control Law for ALFLEX Using Dynamic Inversion and Disturbance Accommodation Control Observer

  • Higashi, Daisaku;Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1871-1876
    • /
    • 2005
  • In this paper, We present a new nonlinear adaptive control law using a disturbance accommodating control (DAC) observer for a Japanese automatic landing flight experiment vehicle called ALFLEX. A future spaceplane must have ability to deal with greater fluctuations in the stability and control derivatives of flight dynamics, because its flight region is much wider than that of conventional aircraft. In our previous studies, digital adaptive flight control systems have been developed based on a linear-parameter-varying (LPV) model depending on dynamic pressure, and obtained good simulation results. However, under previous control laws, it is difficult to accommodate uncertainties represented by disturbance and nonlinearity, and to design a stable flight control system. Therefore, in this study, we attempted to design a nonlinear adaptive control law using the DAC Observer and inverse dynamic methods. A good tracking property of the obtained system was confirmed in numerical simulation.

  • PDF