• Title/Summary/Keyword: Flight Phase

Search Result 329, Processing Time 0.028 seconds

Launch and Early Orbit Phase Simulations by using the KOMPSAT Simulator

  • Lee, Sanguk;Park, Wan-Sik;Lee, Byoung-sun;Lee, Ho-Jin;Park, Hanjun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.33-36
    • /
    • 1999
  • The KOMPSAT, which is scheduled to be launched by Taurus launch vehicle in late November of 1999, will be in a sun-synchronous orbit with an altitude of 685km, eccentricity of 0.001, inclination of 98deg and local time of ascending node of 10:50 a.m. Electronics and Telecommunications Research Institute and Daewoo Heavy Industry had jointly developed a KOMPSAT Simulator as a component of the KOMPSAT Mission Control Element. The MCE had been delivered to Korea Aerospace Research Institute for the KOMPSAT ground operation. It is being used for training of KOMPSAT ground station personnel. Each of satellite subsystems and space environment were mathematically modeled in the simulator. To verify the overall function of KOMPSAT simulator, a Launch and Early Orbit Phase(LEOP) operation simulations have been performed. The simulator had been verified through various tests such as functional level test, subsystem test, interface test, system test, and acceptance test. In this paper, simulation results for LEOP operations to verify flight software adapted into simulator, satellite subsystem models and environment models are presented.

  • PDF

Technical Papers : Implementaion of KSR-3 Range Safety System (기술논문 : KSR-Ⅲ 비행안전 시스템 구현)

  • Kim,Ju-Nyeon;Go,Jeong-Hwan;Lee,Jae-Deuk;Park,Jeong-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.147-154
    • /
    • 2002
  • This paper describes the devlopment and implementation for the KOMPSAT-1 scheduling & automatic command plan generator(KSCG). Some problems in mission planning and command planning had occurred using the mission & command planning s/w in MAPS(Missin Analysis and Planning Subsystem) during the LEOP(Launch & Early Orbit Phase) & early normal mission phase due to lots of manual input process and non-automatic process. Therefore, the more mission operations for KOMPSAT-1. In order to prevent the development of new one(KSCG) which should reduce the manual process and generate automatically the command plan has been needed. As a result, the mission operations of KOMPSAT-1 has greatly became stable and more effient.

Two phase analysis of solid rocket motor plume as particle characteristics (입자 특성에 따른 고체모터 플룸 이상유동 해석)

  • Kim, Seong-Lyong;Kim, In-Sun
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.17-27
    • /
    • 2010
  • KSLV-I KM plume including alumina particle has been studied using the continuum solver. Alumina particles are assumed to have 7 different diameters, and the specific ratio of the plume gas is assumed to be 1.2, with which the internal nozzle flow characteristics are similar to those of the chemically equilibrium analysis results. The results showed that the expansion angle of the particles is smaller than that of the gas phase, and that the big sized alumina particles are gathered in the plume core and the expansion angles of the big sized particles are smaller than those of the light particles. When the emissivity of the particles are assumed to be 0.1, the radiative heat flux is equivalent to those measured during the flight test of KSLV-I.

A Digital Carrier Recovery Scheme for Satellite Transponder (디지털방식의 위성 트랜스폰더 반송파 복원 방안 연구)

  • Lee, Yoon-Jong;Choi, Seung-Woon;Kim, Chong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.807-813
    • /
    • 2009
  • A Satellite transponder is the Communication system to process signal with up-link signal recovery, and transmit to ground station through down-link. The orbit flight in the deep space causes high doppler shift in the received signals from the ground station so that the Carrier recovery and fast synchronization system are essential for the transponder system. The conventional analog transponder is employing the system's carrier recovery along with the PLL (Phase Locked Loop) designed for satellite's operation. This paper presents a digital carrier recovery scheme which can provide more reliable and software reconfigurable implementation technique for satellite transponder system without verifying scheme along with transponder designed for short distance or deep space satellite.

Vacuum Plasma Sprayed NiTiZrSiSn Coating (진공 열 플라즈마 용사공정을 통한 NiTiZrSiSn 벌크 비정질 코팅 형성)

  • Yoon, Sang-Hoon;Kim, June-Seob;Kim, Soo-Ki;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.25 no.4
    • /
    • pp.42-48
    • /
    • 2007
  • An inert gas atomized NiTiZrSiSn bulk metallic glass feedstock was sprayed onto the copper plate using vacuum plasma spraying process. In order to change the in-flight particle energy, that is, thermal energy, the hydrogen gas flow rate in plasma gas mixture was increased at the constant flow rate of argon gas. Coating and single pass spraying bead were produced with the least feeding rate. Regardless of the plasma gas composition, fully melted through unmelted particle could be observed on the overlay coating. However, the frequency of the unmelted particle number density was increased with the decrease of the hydrogen gas flow rate. The amorphous phase fraction within coating was also affected by the number density of the unmelted particle.

Phase Locked Loop based Time Synchronization Algorithm for Telemetry System (텔레메트리 시스템을 위한 PLL 기반의 시각동기 알고리즘)

  • Kim, Geon-Hee;Jin, Mi-Hyun;Kim, Bok-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.4
    • /
    • pp.285-290
    • /
    • 2020
  • This paper presents a time synchronization algorithm based on PLL for application to telemetry systems and implement FPGA logic. The large aircraft of the telemetry system acquires status information through each distributed acquisition devices and analyzes the flight status in real time. For this reason, time synchronization between systems is important to improve precision. This paper presents a PLL based time synchronization algorithm that is less complex than other time synchronization methods and takes less time to process data because there is minimized message transmission for synchronization. The validity of proposed algorithm is proved by simulation of Python. And the VHDL logic was implemented in FPGA to check the time synchronization performance.

Observational Arc-Length Effect on Orbit Determination for KPLO Using a Sequential Estimation Technique

  • Kim, Young-Rok;Song, Young-Joo;Bae, Jonghee;Choi, Seok-Weon
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.295-308
    • /
    • 2018
  • In this study, orbit determination (OD) simulation for the Korea Pathfinder Lunar Orbiter (KPLO) was accomplished for investigation of the observational arc-length effect using a sequential estimation algorithm. A lunar polar orbit located at 100 km altitude and $90^{\circ}$ inclination was mainly considered for the KPLO mission operation phase. For measurement simulation and OD for KPLO, the Analytical Graphics Inc. Systems Tool Kit 11 and Orbit Determination Tool Kit 6 software were utilized. Three deep-space ground stations, including two deep space network (DSN) antennas and the Korea Deep Space Antenna, were configured for the OD simulation. To investigate the arc-length effect on OD, 60-hr, 48-hr, 24-hr, and 12-hr tracking data were prepared. Position uncertainty by error covariance and orbit overlap precision were used for OD performance evaluation. Additionally, orbit prediction (OP) accuracy was also assessed by the position difference between the estimated and true orbits. Finally, we concluded that the 48-hr-based OD strategy is suitable for effective flight dynamics operation of KPLO. This work suggests a useful guideline for the OD strategy of KPLO mission planning and operation during the nominal lunar orbits phase.

추력기를 이용한 우주비행체 자세제어설계

  • Sun, Byung-Chan;Park, Yong-Kyu
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.186-195
    • /
    • 2005
  • This paper deals with attitude control design for a thruster system which is mainly used as a control system of space vehicles. Attitude controllers are designed based on a simple blowing-down thruster system structure. In order to consider severe time-delay effects of the thruster system during controller design, the control design problem is defined based on the corresponding limit cycle analysis. Optimal roll controllers and optimal pitch/yaw controllers are resulted from co-evolutionary optimum design processes for each flight phase. The control performances are verified by computer simulations.

  • PDF

An Antimicrobial Activity of a Peptidic Molecule from the Centipede, Scolopendra subspinipes mutilans L. Koch

  • Eun Jae Soon;Leem Jae-Yoon
    • Biomolecules & Therapeutics
    • /
    • v.13 no.4
    • /
    • pp.240-245
    • /
    • 2005
  • An antimicrobial molecule was purified from centipede, Scolopendra subspinipes mutilans L. Koch, by reverse phase-HPLC. Its molecular weight was determined to be 1208.5493 by using matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. Total amino acid composition analysis revealed that it consists of E, G, P, V, L, F, and W. It exhibited a broad antimicrobial spectrum against not only Gram-negative, but also Gram-positive bacteria. Furthermore, it was found to have an antimicrobial activity against vancomycin resistant enterococci (VRE). It may be a useful molecule for a new antibiotic development, especially against drug-resistant bacteria. We suggest that it may playa role in the defense system of this animal. This is the first report of a peptidic antimicrobial substance from centipede.

Improvement of ADU(Antenna Distribution Unit) for RF signal Stability of Glide Path (활공각제공시설(Glide Path) 신호안정화를 위한 ADU(Antenna Distribution Unit) 개선)

  • Lee, Chang-Woo;Lee, Seung-Tae
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.994-999
    • /
    • 2011
  • This paper explains how existing electrical ADU(Antenna Distribution Unit) has been improved into a mechanical ADU. Generally the mechanical ADU has stabilized Glide Path which provides a RF signal to the aircraft for safe landing and it has solved the issue of phase shift and power distribution ratio change which can be occurred during long-term use. Besides it has been certified by Flight check and operating several airports in oversea as well as in korea.