• Title/Summary/Keyword: Flight Model

Search Result 1,074, Processing Time 0.027 seconds

A Study on Positive Safety Reporting Culture in Aviation Maintenance (긍정적인 항공정비안전보고문화에 관한 연구)

  • Kim, Chun-Yong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.2
    • /
    • pp.64-71
    • /
    • 2012
  • In field of Aviation Maintenance, honest and expedite voluntary report of potential hazard provide airworthiness aircraft by eliminating or avoiding from dangerous factors of aircraft. Although it supports for safety flight, voluntary incident reporting system consist of Aviation practitioner and require cooperation of practitioner due to there are no forcibleness. These occur when positive safety culture and report culture are settled. In this regard, this study firstly identify the current status of Aviation Safety Reporting System in Korea. Then, this article also find out the level of reporting culture of the AMT(Aircraft Maintenance Technicians) and problems in reporting system. Finally, suggestions on the model of positive safety reporting culture in a field of aircraft maintenance.

A Study on the Circular Error Probability of Short-Range Rocket with Parachute (낙하산을 갖는 단거리 발사체의 오차분석)

  • 김찬수;조요한
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.218-225
    • /
    • 1999
  • This paper contains the computational simulation of a free rocket with a parachute and the development of a firing table for each range. To obtain the trajectory of the rocket, 6 DOF model of rocket with parachute was generated and the wind tunnel test was done for the input parameters. Good agreement was obtained between the analysis of trajectory and the flight test result. Also the trajectory error analysis was performed by the Monte Carlo simulation. As a result of simulation, the CEP(Circular Error Probability) of the firing table was calculated.

  • PDF

Virtual Flutter Test of Spanwise Curved Wings Using CFD/CSD Coupled Dynamic Method (CFD/CSD 정밀 연계해석기법을 이용한 3차원 곡면날개의 가상 플러터 시험)

  • Kim, Dong-Hyun;Oh, Se-Won;Kim, Hyun-Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.457-464
    • /
    • 2005
  • The coupled time-integration method with a staggered algorithm based on computational structural dynamics (CSD), finite element method (FEM) and computational fluid dynamics (CFD) has been developed in order to demonstrate physical vibration phenomena due to dynamic aeroelastic excitations. Virtual flutter tests for the spanwise curved wing model have been effectively conducted using the present advanced computational methods with high speed parallel processing technique. In addition, the present system can simultaneously give a recorded data fie to generate virtual animation for the flutter safety test. The results for virtual flutter test are compared with the experimental data of wind tunnel test. It is shown from the results that the effect of spanwise curvature have a tendency to decrease the flutter dynamic pressure for the same flight condition.

  • PDF

Molecular Dynamic Study of a Polymeric Solution (I). Chain-Length Effect

  • Lee Young Seek;Ree Taikyue
    • Bulletin of the Korean Chemical Society
    • /
    • v.3 no.2
    • /
    • pp.44-49
    • /
    • 1982
  • Dynamic and equilibrium structures of a polymer chain immersed in solvent molecules have been investigated by a molecular dynamic method. The calculation employs the Lennard-Jones potential function to represent the interactions between two solvent molecules (SS) and between a constituent particle (monomer unit) of the polymer chain and a solvent molecule (CS) as well as between two non-nearest neighbor constituent particles of the polymer chain (CC), while the chemical bond for nearest neighbor constituent particles was chosen to follow a harmonic oscillator potential law. The correlation function for the SS, CS and CC pairs, the end-to-end distance square and the radius of gyration square were calculated by varying the chain length (= 5, 10, 15, 20). The computed end-to-end distance square and the radius of gyration square were found to be in a fairly good agreement with the corresponding results from the random-flight model. Unlike earlier works, the present simulation rsesult shows that the autocorrelation function of radius of gyration square decays slower than that of the end-to-end distance square.

Numerical Simulation and Experiment on Supersonic Air-Breathing Laser-Spike Propulsion Vehicle (초음속 공기 흡입식 레이저 스파이크 추진 비행체에 관한 수치 해석 및 실험적 연구)

  • Kim Sukyum;Kim Young-Taek;Jeong In-Seock
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.57-61
    • /
    • 2004
  • As a kind of application of laser propulsion, air-breathing laser-spike engine can be designed for aircraft in atmospheric flight. Laser-spike engine generates thrust using the blast wave induced by laser energy instead of combustion process. And this engine use air as propellant, therefore, it need no on board propellant. For experimental study, supersonic wind tunnel and spark generator were used. Flow visualization was performed using 2-dimensional laser-spike engine model And numerical simulation of the corresponding case for the experiment was done and compared with experimental case. Detailed results will be discussed at the presentation.

  • PDF

Performance Simulation of a Ramjet Using Visual C++ Program

  • Owino, George Omollo;Kong, Chang-Duk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.499-502
    • /
    • 2008
  • This paper presents on research findings of how Visual C++ program can be used to generate codes capable of performing ramjet engine simulation To understand the diversity and applicability of this tool an arbitrary ramjet model will be considered for which generated output values will be compared with those from a commercial program GASTURB 9 iterated under the same input parameters. Several governing thermodynamic equations will first be discussed in order that we understand the fundamental idea behind values printed out on the GUI. C++ compiler was chosen as a tool of use due to its availability, ease of use, ability to compute functions faster and uniquely possible to make a stand alone GUI executable in DOS mode. The program is developed in such a way that given the ambient flight conditions, burner exit temperature and several geometry areas the program generates its own input values used in the succeeding stations. A close resemblance of output values that define performance and thermodynamic state of the engine was realized between GASTURB 9 and using this code made from C++ compiler.

  • PDF

Flow Control Analysis of S-duct Diffuser Inlet

  • Lian, Xiaochun;Zhang, Lifen;Wu, Dingyi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.157-159
    • /
    • 2008
  • An numerical investigation of the flow characteristics inside a diffusing S-duct inlet with and without vortex generators(VGs) was conducted. The primary discussion herein focuses on development of secondary flow in the S-duct with and without VGs, pressure recovery and distortion at the exit are also discussed. Full three-dimensional Navier-Stokes equations are solved using finite volume method and $k-\varepsilon$ turbulence model is employed. In order to validate the credibility of the numerical methods, predicted results of surface pressure are compared with flight test for the S-duct inlet without VGs, and it shows fairly good agreement. The result shows that VGs alter the flow characteristics in the S-duct and are effective in reducing distortion and ineffective in improving pressure recovery.

  • PDF

A Layout Plan of a Pressure-fed Hot-firing Test Facility for the Performance Evaluation of a Combustion Chamber (연소기 성능평가를 위한 가압식 연소시험설비의 배치 계획)

  • Lee, Kwang-Jin;Cho, Nam-Kyung;Han, Young-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.465-467
    • /
    • 2012
  • A layout plan of a pressure-fed test facility to carry out hot-firing test of liquid rocket engine combustion chamber and purpose of rooms located in the test building were proposed. The layout plan of suggested infrastructure in this paper was determined depending on the design of a vertical test facility to use the natural lay of the land and simulate the initial position of flight model.

  • PDF

Photogrammetry-based reverse engineering method for aircraft airfoils prediction

  • Ba Zuhair, Mohammed A.
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.4
    • /
    • pp.331-344
    • /
    • 2021
  • Airframe internal and external specifications are the product of intensive intellectual efforts and technological breakthroughs distinguishing each aircraft manufacturer. Therefore, geometrical information characterizing aircraft primary aerodynamic surfaces remain classified. When attempting to model real aircraft, many members of the aeronautical community depend on their personal expertise and generic design principles to bypass the confidentiality obstacles and sketch real aircraft airfoils, which therefore vary for the same aircraft due to the different designers' initial assumptions. This paper presents a photogrammetric shape prediction method for deriving geometrical properties of real aircraft airframe by utilizing their publicly accessible static and dynamic visual content. The method is based on extracting the visually distinguishable curves at the fairing regions between aerodynamic surfaces and fuselage. Two case studies on B-29 and B-737 are presented showing how to approximate the sectional coordinates of their wing inboard airfoils and proving the good agreement between the geometrical and aerodynamic properties of the replicated airfoils to their original versions. Therefore, the paper provides a systematic reverse engineering approach that will enhance aircraft conceptual design and flight performance optimization studies.

Curvature-based 3D Path Planning Algorithm for Quadcopter (쿼드콥터의 곡률 기반 3차원 경로 계획 알고리즘)

  • Jaeyong Park;Boseong Kim;Seungwook Lee;Maulana Bisyir Azhari;Hyunchul Shim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.316-322
    • /
    • 2023
  • The increasing popularity of autonomous unmanned aerial vehicles (UAVs) can be attributed to their wide range of applications. 3D path planning is one of the crucial components enabling autonomous flight. In this paper, we present a novel 3D path planning algorithm that generates and utilizes curvature-based trajectories. Our approach leverages circular properties, offering notable advantages. First, circular trajectories make collision detection easier. Second, the planning procedure is streamlined by eliminating the need for the spline process to generate dynamically feasible trajectories. To validate our proposed algorithm, we conducted simulations in Gazebo Simulator. Within the simulation, we placed various obstacles such as pillars, nets, trees, and walls. The results demonstrate the efficacy and potential of our proposed algorithm in facilitating efficient and reliable 3D path planning for UAVs.