• Title/Summary/Keyword: Flexural Performance

Search Result 1,244, Processing Time 0.025 seconds

Effects of loading history on seismic performance of SRC T-shaped column, Part I: Loading along web

  • Wang, J.;Liu, Z.Q.;Xue, J.Y.;Hu, C.M.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.193-201
    • /
    • 2018
  • This paper describes an experimental study on the seismic performance of steel reinforced concrete (SRC) T-shaped columns. The lateral loads were applied along the web of the column with different loading histories, such as monotonic loading, mixed loading of variable amplitude cyclic loading and monotonic loading, constant amplitude cyclic loading and variable amplitude cyclic loading. The failure modes, load-displacement curves, characteristic loads and displacements, ductility, strength and stiffness degradations and energy dissipation capacity of the column were analyzed. The effects of loading history on the seismic performance were focused on. The test results show that the specimens behaved differently in the aspects of the failure mode subject to different loading history, although all the failure modes can be summarized as flexural failure. The hysteretic loops of specimens are plump, and minimum values of the failure drift angles and ductility coefficients are 1/24 and 4.64, respectively, which reflect good seismic performance of SRC T-shaped column. With the increasing numbers of loading cycles, the column reveals lower bearing capacity and ductility. The strength and stiffness of the column with variable amplitude cyclic loading degrades more rapidly than that with constant amplitude cyclic loading, and the total cumulative dissipated energy of the former is less.

Finite element analysis of shear-deficient RC beams strengthened with CFRP strips/sheets

  • Lee, H.K.;Ha, S.K.;Afzal, M.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.2
    • /
    • pp.247-261
    • /
    • 2008
  • Performance of shear-deficient reinforced concrete (RC) beams strengthened with carbon fiber-reinforced polymer (CFRP) strips/sheets is analyzed through numerical simulations on four-point bending tests. The numerical simulations are carried out using the finite element (FE) program ABAQUS. A micromechanics-based constitutive model (Liang et al. 2006) is implemented into the FE program ABAQUS to model CFRP strips/sheets. The predicted results are compared with experiment data (Khalifa and Nanni 2002) to assess the accuracy of the proposed FE analysis approach. A series of numerical tests are conducted to investigate the influence of stirrup lay-ups on the shear strengthening performance of the CFRP strips/sheets, to illustrate the influence of the damage parameters on the microcrack density evolution in concrete, and to investigate the shear and flexural strengthening performance of CFRP strips/ sheets. It has been shown that the proposed FE analysis approach is suitable for the performance prediction of RC beams strengthened with CFRP strips/sheets.

Organic fiber reinforcement for Performance improvement of Blast resistance and Flexural Performance Evaluation of Fiber reinforced concrete using organic fiber reinforcement (방폭 성능 강화용 유기계 섬유보강재 제조 및 이를 혼입한 섬유보강 콘크리트의 휨성능 평가)

  • Jeon, Chanki;Jeon, Joongkyu;Kim, Sungil;Kim, Kihyung
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.2
    • /
    • pp.211-218
    • /
    • 2015
  • This study propose the organic fiber reinforcement for performance improvement of blast resistance. Proposed fibers are polyamide fiber, PET fiber and aramid fiber and fiber reinforcements were produced by ATY method. To evaluate strain energy absorption capacity of organic fiber reinforced concrete using organic fiber reinforcement, 4-point bending test and 3-point bending tests on notched beam were performed. Test results show that PET fiber reinforced concrete has outstanding performance. It is thought that the PET fiber is effective for the performance improvement of blast resistance.

Pullout Performance of Reinforcing Fiber Embedded in Nano Materials Cement Mortar with Nano Clay Contents (나노클레이 첨가량에 따른 나노재료 시멘트 모르타르에 정착된 보강섬유의 인발성능)

  • Oh, Ri-On;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.113-121
    • /
    • 2013
  • Recently, it has been studied for the application of nano-materials in the concrete. Applied a small amount of nano-materials can achieve the goal of high strength, high performance and high durability. The small addition of nano clay improves strength, thermal stability, and durability of concrete because of the excellent dispersion. The present study has investigated the effectiveness, when varying with the contents of nano clay, influencing the pull-out behavior of macro synthetic fibers in nano materials cement mortar. Pullout tests conducted in accordance with the Japan Concrete Institute (JCI) SF-8 standard for fiber-reinforced concrete test methods were used to evaluate the pullout performance of the different nano clay. Nano clay was added to the 0, 1, 2, 3, 4 and 5 % of cement weight. The experimental results demonstrated that the addition of nano clay led to improve the pull-out properties as of the load-displacement curve in the precracked and debonded zone. Also, the compressive strength, flexural strength and pullout performance and of Mix No. 1 and No. 2 increased up to the point when nano clay used increased by 2 and 3 % contents, respectively, but decreased when the exceeded 3 and 4 %, respectively. It was proved by verifying increase of the scratching phenomenon in macro synthetic fiber surface through the microstructure analysis on the surface of macro synthetic fiber.

Improvement of Flexural Performance for Deep-Deck Plate using Cap Plate (캡플레이트를 이용한 장스팬용 춤이 깊은 데크의 휨성능 개선)

  • Park, K.Y.;Nam, Y.S.;Choi, Y.H.;Kim, Y.H.;Choi, S.M.
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.555-567
    • /
    • 2013
  • Slim floor system using deep decks has been developed and employed in Europe to reduce the floor height of steel structures. Although long span buildings involving the issue of reducing floor height are being increasingly built in Korea, employing deep decks in more than 7m long span structures is likely to cause problems associated with excessive deflection. This study is applied to the long-span concrete casting of the deep deck plate usability of deflection due to bending and torsional instability of open cross-section, as a way to improve the problem of cap plates are suggested, and the optimum length of reinforcement and location are derived from theoretic estimation. The cap plates are placed on the deep decks with regular intervals to overcome the instability of open sections, improve the stiffness of the sections and control the deflection at the centers. The improvement in flexural capacity associated with the location of the cap plates and the length of reinforcement are verified through analysis and test.

An Evaluation of Flexural Performance of Composite Beam with Ultra High Performance Concrete Deck and Inverted T-Shaped Steel Girder (초고강도 콘크리트 바닥판과 역T형 강재 합성보의 휨 성능 평가)

  • Yoo, Sung-Won;Joh, Chang-Bin;Choi, Kwang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.64-71
    • /
    • 2016
  • In this paper, when the composite beam is made with UHPC deck and steel girder, the steel girder takes the form of the inverted-T shape without top flange because of high strength and stiffness of UHPC deck. There is no evaluation by experiment and analysis about the shear connector behavior on the web of steel girder and flexural behavior of inverted-T shape composite beam. By this reason, this study compares between experiment and analysis by using tension softening model of UHPC on the basis of flexural test results of 16 members considering compressive strength of UHPC, spacing of stud and thickness of deck as variables. The results of tensile strength of UHPC by inverse analysis were 6.57 MPa(in case of 120 MPa) and 9.57 MPa(in case of 150 MPa). In case of the test members with small stud spacing, the results of analysis and test were close clearly, and the test members with thick deck and low UHPC compressive strength also similar, but effects were small. As it compared between analysis and experiment totally, the results of analysis and experiment agree well. So the tension softening model of UHPC is reasonably reflected on the real behavior of composite beam of UHPC.

Performance evaluation of SFRC for tunnel segments based on large beam test (대형보 실험을 통한 TBM 터널 세그먼트용 강섬유보강콘크리트 성능평가)

  • Moon, Do-Young;Roh, Hwasung;Chang, Soo-Ho;Lee, Gyu-Phil;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.3
    • /
    • pp.287-298
    • /
    • 2014
  • In order to develop SFRC TBM tunnel segment, evaluating the SFRC mixture was conducted through flexural tests of SFRC beams without ordinary steel reinforcement in this study. Considered variables were compressive strengths of SFRC, aspect and mix ratio of steel fibers and total 16 specimens were fabricated and tested until failure. The load-vertical displacement results demonstrates that the effect of aspect ratio is minor when compared to results form small beam test(Moon et al, 2013). A SFRC beam resists the vertical load until the width of crack reaches to 7 mm due to steel fibers across cracked surfaces. Moreover, it is found that flexural moment estimated by equation of TR No. 63(Concrete Society, 2011) is useful for prediction of nominal strength for SFRC structure. From the investigation of fiber distribution in cracked section, it is found that dispersion improved in actual size beam compared to in standard small beam for evaluation of flexural strength.

The Effect of Mild Tensile Reinforcement and Effective Prestress on the Flexural Performance of the Prestressed Lightweight Concrete Beams with Unbonded Tendons (비부착 프리스트레스트 경량 콘크리트 보의 휨 거동에 대한 부착 철근과 유효 프리스트레스의 영향)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok;Byun, Hang-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.617-626
    • /
    • 2011
  • Seven post-tensioned lightweight concrete (LWC) beam specimens were tested under a symmetrical two-point top loading system. The parameters investigated were the amounts of mild longitudinal reinforcement and effective prestressing. The design compressive strength and dry density of the LWC tested were 30 MPa and 1,770 $kg/m^3$, respectively. Similar to post-tensioned normal weight concrete (NWC) beams, the crack propagation and stress increase of the unbonded tendons were significantly affected by the amounts of mild longitudinal reinforcement and effective prestressing. With the increase in the amounts of mild longitudinal reinforcement and effective prestressing, the serviceability and flexural capacity of the beams were enhanced whereas the stress increase in the unbonded tendons decreased. To control the crack width in post-tensioned LWC beams, a minimum amount of mild longitudinal reinforcement specified in ACI 318-08 provision is required. The flexural behavior of post-tensioned LWC beams and stress increase of the unbonded tendons could be rationally predicted by the proposed non-linear two-dimensional analysis. On the other hand, ACI 318-08 flexure provision was too conservative about the post-tensioned LWC beams.

Effect of Saw-Damage Etching Conditions on Flexural Strength in Si Wafers for Silicon Solar Cells (태양전지용 실리콘 기판의 절삭손상 식각 조건에 의한 곡강도 변화)

  • Kang, Byung-Jun;Park, Sung-Eun;Lee, Seung-Hun;Kim, Hyun-Ho;Shin, Bong-Gul;Kwon, Soon-Woo;Byeon, Jai-Won;Yoon, Se-Wang;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.617-622
    • /
    • 2010
  • We have studied methods to save Si source during the fabrication process of crystalline Si solar cells. One way is to use a thin silicon wafer substrate. As the thickness of the wafers is reduced, mechanical fractures of the substrate increase with the mechanical handling of the thin wafers. It is expected that the mechanical fractures lead to a dropping of yield in the solar cell process. In this study, the mechanical properties of 220-micrometer-solar grade Cz p-type monocrystalline Si wafers were investigated by varying saw-damage etching conditions in order to improve the flexural strength of ultra-thin monocrystalline Si solar cells. Potassium hydroxide (KOH) solution and tetramethyl ammonium hydroxide (TMAH) solution were used as etching solutions. Etching processes were operated with a varying of the ratio of KOH and TMAH solutions in different temperature conditions. After saw-damage etching, wafers were cleaned with a modified RCA cleaning method for ten minutes. Each sample was divided into 42 pieces using an automatic dicing saw machine. The surface morphologies were investigated by scanning electron microscopy and 3D optical microscopy. The thickness distribution was measured by micrometer. The strength distribution was measured with a 4-point-bending tester. As a result, TMAH solution at $90^{\circ}C$ showed the best performance for flexural strength.

Evaluation of Flexural Strength of Wide Sleepers with Reinforcing Bars for Quick-Hardened Concrete Track (보강철근이 적용된 급속경화궤도용 광폭침목의 보유 휨 내력 평가)

  • Bae, Young-Hoon;Lee, Il-Wha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.702-709
    • /
    • 2018
  • A quick-hardened concrete track was developed to improve the aged ballasted track to a concrete track, and applied to earthworks and tunnels of main and urban railways. Rebars for reinforcement are not generally applied to prestressed concrete sleepers. On the other hand, many cracked sleepers have been observed in railroad sites. A wide sleeper, which is one of the main components of quick-hardened concrete track, should be structurally safe and crack-resistant in a ballasted and concrete track to avoid this problem. In particular, a wide sleeper manufactured by a post-tension method must have reinforcing bars applied to the rail-seat section. In this paper, static tests, dynamic tests, and fatigue tests were carried out to compare the flexural strength and crack resistance performance of a wide sleeper with and without reinforcing bars for a quick-hardened concrete track. As a result of the test, if some reinforcing bars are applied appropriately to the rail-seat section of a wide sleeper, it will be possible to prevent the occurrence of cracks, delay the expansion of the crack width, and the flexural fracture.