DOI QR코드

DOI QR Code

Organic fiber reinforcement for Performance improvement of Blast resistance and Flexural Performance Evaluation of Fiber reinforced concrete using organic fiber reinforcement

방폭 성능 강화용 유기계 섬유보강재 제조 및 이를 혼입한 섬유보강 콘크리트의 휨성능 평가

  • Jeon, Chanki (Department of Civil and Environmental Engineering, Incheon National University) ;
  • Jeon, Joongkyu (Technology Research Lab, Kolon Global Co.) ;
  • Kim, Sungil (Technology Research Lab, Kolon Global Co.) ;
  • Kim, Kihyung (Department of Civil Engineering, Yeoju Institute of Technology)
  • Received : 2015.04.21
  • Accepted : 2015.05.20
  • Published : 2015.06.30

Abstract

This study propose the organic fiber reinforcement for performance improvement of blast resistance. Proposed fibers are polyamide fiber, PET fiber and aramid fiber and fiber reinforcements were produced by ATY method. To evaluate strain energy absorption capacity of organic fiber reinforced concrete using organic fiber reinforcement, 4-point bending test and 3-point bending tests on notched beam were performed. Test results show that PET fiber reinforced concrete has outstanding performance. It is thought that the PET fiber is effective for the performance improvement of blast resistance.

본 연구에서는 방폭 성능 강화를 위하여 유기계 다발형 섬유보강재를 제안하였으며, 제안된 섬유는 폴리아미드섬유, PET섬유 및 아라미드섬유이고, ATY 가공방식을 통해 다발형 단섬유를 제조하였다. 유기계 섬유보강재를 혼입한 콘크리트의 방폭 성능 평가를 대신하여 변형에너지 흡수 능력을 평가하였으며, 이를 위해 4점 휨시험과 노치보의 3점 휨시험을 수행하였다. 3종류의 유기계 단섬유를 혼입한 콘크리트의 휨성능 평가 결과, PET섬유 보강 콘크리트가 가장 우수한 결과를 나타내어, 방폭 성능 강화를 위하여 상당히 효과적일 것으로 판단된다.

Keywords

References

  1. BS EN 14651:2005+A1:2007. (2007), Test methods for metallic fibers concrete - Measuring the flexural tensile strength(limit of proportionality(LOP), residual), BSI
  2. BS EN 14889-2:2006. (2006), Fibres for concrete-Part 2 : Polymer fibers-Definitions, specifications and conformity, BSI
  3. Kim, D. J., Naaman, A. E., El-Tawil, S. (2008), Comparative flexural behavior of four fiber reinforced cementitious composites, Cem. Concr. Compos, 25, 4144-4155.
  4. Kim, D. J., Park, S. H., Ryu, G. S., Koh, K, T. (2011), Comparative flexural behavior of hybrid ultra high performance fiber reinforced concrete with different macro fibers, Const. Build. Mater, 30, 917-928.
  5. Kim, Y. I., Park, D. S., Seo, C. H. (2005), Variations of Material Characteristics of High-strength Concrete according to Increase of Steel Fiber Volum, Journal of Architectural Institute of Korea, AIK., 21(2), 95-101
  6. Jeon, C K., Jeon, J. K. (2011), Properties of advance synthetic fiber reinforced concrete for improvement of tunnel shotcrete performance, Journal of the Korea Society of Hazard Mitigation, KOSHAM, 7(1), 43-50.
  7. Jeon, J. K., Kim, S. G., Jeon, C. K., Kim, K. H. (2014), Material Properties Evaluation of Organic Fiber Reinforcement for Performance Improvement of Impact.blast Resistance, Proceeding of the Korea Concrete Institute, KCI., 26(2), 585-586.
  8. Jeon, J. K., Kim, W. S., Jeon, C. K., Kim, J. C. (2014), Processing and Mechanical Properties of Macro Polyamide Fiber Reinforced Concret, Materials, 7(12), 7634-7652. https://doi.org/10.3390/ma7127634
  9. Song, P. S., Hwang, S., Sheu, B. C. (2005), Strength properties of nylon- and polypropylene-fiber-reinforced concrete, Cem. Concr. Res, 35, 1546-1550. https://doi.org/10.1016/j.cemconres.2004.06.033

Cited by

  1. A Study on the Flexural Strength Properties of Composite Concrete with the Morphological Properties of Super Fiber vol.11, pp.4, 2020, https://doi.org/10.11004/kosacs.2020.11.4.008