• Title/Summary/Keyword: Flexible transparent electrodes

Search Result 74, Processing Time 0.031 seconds

Investigation of Transparent Conductive Oxide Films Deposited by Co-sputtering of ITO and AZO (ITO와 AZO 동시 증착법으로 제조된 투명전도막의 특성 연구)

  • Kim, Dong-Ho;Kim, Hye-Ri;Lee, Sung-Hun;Byon, Eung-Sun;Lee, Gun-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.3
    • /
    • pp.128-132
    • /
    • 2009
  • Transparent conducting thin films of indium tin oxide(ITO) co-sputtered with aluminum-doped zinc oxide(AZO) were deposited on glass substrate by dual magnetron sputtering. It was found that the electrical properties and structural characteristics of the films are significantly changed according to the sputtering power of the AZO target. The IAZTO film prepared with D.C power of ITO at 100 W and R.F power of AZO at 50 W shows an electrical resistivity of $4.6{\times}10^{-4}{\Omega}{\cdot}cm$ and a sheet resistance of $30{\Omega}/{\square}$ (for 150 nm thick). Besides of the improvement of the electrical properties, compared to the ITO films deposited at the same process conditions, the IAZTO films have very smooth surface, which is due to the amorphous nature of the films. However, the electrical conductivity of the IAZTO films was found to be deteriorated along with the crystallization in case of the high temperature deposition (above $310^{\circ}C$). In this work, high quality amorphous transparent conductive oxide layers could be obtained by mixing AZO with ITO, indicating possible use of IAZTO films as the transparent electrodes in OLED and flexible display devices.

Electrical Property of Electrospun PCL/MWCNTs Nanofiber with Additive Silver Thin Film (은 박막이 첨가된 전기방사법으로 제작한 PCL/MWCNTs 나노섬유의 전기적 특성)

  • Kim, Jin Un;Kim, Kyong Min;Park, Kyoung Wan;Sok, Jung Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.238-243
    • /
    • 2018
  • A nanofiber was fabricated with carbon nanotubes for transparent electrodes. It was prepared with a composite solution of bio-molecules polycaprolactone (PCL) and multiwalled carbon nanotubes (MWCNTs) by electrospinning on a glass substrate, following which its electrical characteristics were investigated. The content of MWCNTs was varied during electrospinning, while that of PCL was fixed. Further, a nanometer-thick thin film of silver was deposited on the nanofiber layer using a thermal evaporator to improve the electrical characteristics; the sheet resistance significantly reduced after this deposition. The results showed that this carbon nanotube nanofiber has potential applications in biotechnology and as a flexible transparent display material.

MPTMS Treated Au/PDMS Membrane for Flexible and Stretchable Strain Sensors

  • Yang, Seongjin;Lim, Hyun Jee;Jeon, Hyungkook;Hong, Seong Kyung;Shin, Jung Hwal
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.247-251
    • /
    • 2016
  • Au/PDMS membranes are widely used to fabricate strain sensors which can detect input signals. An interfacial adhesion between metal films and polydimethylsiloxane (PDMS) substrates is one of the important factors determining the performance of strain sensors, in terms of robustness, reliability, and sensitivity. Here, we fabricate Au/PDMS membranes with (3-mercaptopropyl) trimethoxysilane (MPTMS) treatment. PDMS membranes were fabricated by spin-coating and the thickness was controlled by varying the spin rates. Au electrodes were deposited on the PDMS membrane by metal sputtering and the thickness was controlled by varying sputtering time. Owing to the MPTMS treatment, the interfacial adhesion between the Au electrode and the PDMS membrane was strengthened and the membrane was highly transparent. The Au electrode, fabricated with a sputtering time of 50 s, had the highest gauge factor at a maximum strain of ~0.7%, and the Au electrode fabricated with a sputtering time of 60 s had the maximum strain range among sputtering times of 50, 60, and 120 s. Our technique of using Au/PDMS with MPTMS treatment could be applied to the fabrication of strain sensors.

Organic Thin-Film Transistors Fabricated on Flexible Substrate by Using Nanotransfer Molding

  • Hwang, Jae-Kwon;Dang, Jeong-Mi;Sung, Myung-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.287-287
    • /
    • 2010
  • We report a new direct patterning method, called liquid bridge-mediated nanotransfer molding (LB-nTM), for the formation of two- or three-dimensional structures with feature sizes between tens of nanometers and tens of micron over large areas. LB-nTM is based on the direct transfer of various materials from a mold to a substrate via a liquid bridge between them. This procedure can be adopted for automated direct printing machines that generate patterns of functional materials with a wide range of feature sizes on diverse substrates. Arrays of TIPS-PEN TFTs were fabricated on 4" polyethersulfone (PES) substrates by LB-nTM using PDMS molds. An inverted staggered structure was employed in the TFT device fabrication. A 150 nm-thick indium-tin oxide (ITO) gate electrode and a 200 nm-thick SiO2dielectric layer were formed on a PES substrate by sputter deposition. An array of TIPS-PEN patterns (thickness: 60 nm) as active channel layers was fabricated on the substrate by LB-nTM. The nominal channel length of the TIPS-PEN TFT was 10 mm, while the channel width was 135 mm. Finally, the source and drain electrodes of 200 nm-thick Ag were defined on the substrate by LB-nTM. The TIPS-PEN TFTs can endure strenuous bending and are also transparent in the visible range, and therefore potentially useful for flexible and invisible electronics.

  • PDF

저온 공정 온도에서 $Al_2O_3$ 게이트 절연물질을 사용한 InGaZnO thin film transistors

  • 우창호;안철현;김영이;조형균
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.11-11
    • /
    • 2010
  • Thin-film-transistors (TFTs) that can be deposited at low temperature have recently attracted lots of applications such as sensors, solar cell and displays, because of the great flexible electronics and transparent. Transparent and flexible transistors are being required that high mobility and large-area uniformity at low temperature [1]. But, unfortunately most of TFT structures are used to be $SiO_2$ as gate dielectric layer. The $SiO_2$ has disadvantaged that it is required to high driving voltage to achieve the same operating efficiency compared with other high-k materials and its thickness is thicker than high-k materials [2]. To solve this problem, we find lots of high-k materials as $HfO_2$, $ZrO_2$, $SiN_x$, $TiO_2$, $Al_2O_3$. Among the High-k materials, $Al_2O_3$ is one of the outstanding materials due to its properties are high dielectric constant ( ~9 ), relatively low leakage current, wide bandgap ( 8.7 eV ) and good device stability. For the realization of flexible displays, all processes should be performed at very low temperatures, but low temperature $Al_2O_3$ grown by sputtering showed deteriorated electrical performance. Further decrease in growth temperature induces a high density of charge traps in the gate oxide/channel. This study investigated the effect of growth temperatures of ALD grown $Al_2O_3$ layers on the TFT device performance. The ALD deposition showed high conformal and defect-free dielectric layers at low temperature compared with other deposition equipments [2]. After ITO was wet-chemically etched with HCl : $HNO_3$ = 3:1, $Al_2O_3$ layer was deposited by ALD at various growth temperatures or lift-off process. Amorphous InGaZnO channel layers were deposited by rf magnetron sputtering at a working pressure of 3 mTorr and $O_2$/Ar (1/29 sccm). The electrodes were formed with electron-beam evaporated Ti (30 nm) and Au (70 nm) bilayer. The TFT devices were heat-treated in a furnace at $300^{\circ}C$ and nitrogen atmosphere for 1 hour by rapid thermal treatment. The electrical properties of the oxide TFTs were measured using semiconductor parameter analyzer (4145B), and LCR meter.

  • PDF

Alternative Sintering Technology of Printed Nanoparticles for Roll-to-Roll Process (롤투롤 인쇄공정 적용을 위한 차세대 나노입자 소결 기술)

  • Lee, Eun Kyung;Eun, Kyoungtae;Ahn, Young Seok;Kim, Yong Taek;Chon, Min-Woo;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.15-24
    • /
    • 2014
  • Recently, a variety of printing technologies, including ink jet, gravure, and roll-to-roll (R2R) printing, has generated intensive interest in the application of flexible and wearable electronic devices. However, the actual use of printing technique is much limited because the sintering process of the printed nanoparticle inks remains as a huge practical drawback. In the fabrication of the conductive metal film, a post-sintering process is required to achieve high conductivity of the printed film. The conventional thermal sintering takes considerable sintering times, and requires high temperatures. For application to flexible devices, the sintering temperature should be as low as possible to minimize the damage of polymer substrate. Several alternative sintering methods were suggested, such as laser, halogen lamp, infrared, plasma, ohmic, microwave, and etc. Eventually, the new sintering technique should be applicable to large area, R2R, and polymer substrate as well as low cost. This article reviews progress in recent technologies for several sintering methods. The advantages and disadvantages of each technology will be reviewed. Several issues for the application in R2R process are discussed.

A Study on the Development of ac Powder Electroluminescent Lamp (AC 구동 분산형 전장발광램프 개발에 관한 연구)

  • Kim, H.S.;Kim, E.D.;Kang, D.P.;Park, J.M.;Moon, S.I.;Kang, U.;Chun, B.D.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.306-309
    • /
    • 1989
  • This paper describes the Manufacturing process and electrical properties of ac thick film electroluminescent lamps which made of the mixture of ZnS:Cu,Cl phosphor powder and polymer binding materials. The phosphor layer is sandwiched between two electrodes, one of which is transparent, and is supported by a substrate. The substrate may be glass or flexible plastic or it may be metallic. In this study we manufactured suspend layer which consists of ZnS:Cu,Cl powder suspended in a NBR. As yet our results are behind other commercial product in electrical properties and brightness. However they can be improved by selection of appropriate polymer binding materials, development of blending technology.

  • PDF

Characteristics of ITO/Ag-Pd-Cu/ITO Multilayer Electrodes for High Efficiency Organic Solar Cells

  • Kim, Hyo-Jung;Kang, Sin-Bi;Na, Seok-In;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.257.1-257.1
    • /
    • 2014
  • We investigated characteristics of ITO/Ag-Pd-Cu (APC)/ITO multilayer electrodes prepared by direct current magnetron sputtering for use as an anode in organic solar cells (OSCs). To optimize electrical properties of ITO/APC/ITO multilayer, we fabricated the ITO/APC/ITO multilayer at a fixed ITO thickness of 30 nm as a function of APC thickness. Compare to the surface of Ag layer on ITO, the APC had a smooth surface morphology. At optimized APC thickness of 12 nm, the ITO/APC/ITO multilayer exhibited a sheet resistance of $6{\Omega}/square$ and optical transmittance of 84.15% at a wavelength of 550 nm which is comparable to conventional ITO/Ag/ITO multilayer. However, the APC-based ITO multilayer showed a higher average transmittance in a visible region than the Ag-based ITO multilayer. The higher average transmittance of ITO/APC/ITO multilayer indicated the multilayer is suitable anode for organic solar cells with P3HT:PCBM active layer. OSCs fabricated on the optimized ITO/ACP/ITO multilayer exhibited a better performance with a fill factor of 64.815%, a short circuit current of $8.107mA/cm^2$, an open circuit voltage of 0.59 V, and power conversion efficiency (3.101%) than OSC with ITO/Ag/ITO multilayer (2.8%).

  • PDF

Flexibility Improvement of InGaZnO Thin Film Transistors Using Organic/inorganic Hybrid Gate Dielectrics

  • Hwang, B.U.;Kim, D.I.;Jeon, H.S.;Lee, H.J.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.341-341
    • /
    • 2012
  • Recently, oxide semi-conductor materials have been investigated as promising candidates replacing a-Si:H and poly-Si semiconductor because they have some advantages of a room-temperature process, low-cost, high performance and various applications in flexible and transparent electronics. Particularly, amorphous indium-gallium-zinc-oxide (a-IGZO) is an interesting semiconductor material for use in flexible thin film transistor (TFT) fabrication due to the high carrier mobility and low deposition temperatures. In this work, we demonstrated improvement of flexibility in IGZO TFTs, which were fabricated on polyimide (PI) substrate. At first, a thin poly-4vinyl phenol (PVP) layer was spin coated on PI substrate for making a smooth surface up to 0.3 nm, which was required to form high quality active layer. Then, Ni gate electrode of 100 nm was deposited on the bare PVP layer by e-beam evaporator using a shadow mask. The PVP and $Al_2O_3$ layers with different thicknesses were used for organic/inorganic multi gate dielectric, which were formed by spin coater and atomic layer deposition (ALD), respectively, at $200^{\circ}C$. 70 nm IGZO semiconductor layer and 70 nm Al source/drain electrodes were respectively deposited by RF magnetron sputter and thermal evaporator using shadow masks. Then, IGZO layer was annealed on a hotplate at $200^{\circ}C$ for 1 hour. Standard electrical characteristics of transistors were measured by a semiconductor parameter analyzer at room temperature in the dark and performance of devices then was also evaluated under static and dynamic mechanical deformation. The IGZO TFTs incorporating hybrid gate dielectrics showed a high flexibility compared to the device with single structural gate dielectrics. The effects of mechanical deformation on the TFT characteristics will be discussed in detail.

  • PDF

Characteristics of SiO2 Based Asymmetric Multilayer Thin Films for High Performance Flexible Transparent Electrodes (고성능 유연 투명전극용 SiO2 기반 비대칭 다층 박막의 특성)

  • Jeong, Ji-Won;Kong, Heon;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.1
    • /
    • pp.25-30
    • /
    • 2020
  • Oxide (SiO2)/Metal(Ag)/Oxide(SiO2, ITO, ZnO) multilayer films were fabricated using a magnetron sputtering technique at room temperature on Si (p-type, 100) and a glass substrate. The electrical and optical properties of the asymmetric multilayer films depended on the thickness of the mid-layer film and the type of oxide in the bottom layer. As the metal layer becomes thicker, the sheet resistance decreases. However, the transmittance decreases when the metal layer exceeds a threshold thickness of approximately 10~12 nm. In addition, the sheet resistance and transmittance change according to the type of oxide in the bottom layer. If the oxide has a large resistivity, the overall sheet resistance increases. In addition, the anti-reflection effect changes according to the refractive index of the oxide material. The optical and electrical properties of multilayer films were investigated using an ultraviolet visible (UV-Vis) spectrophotometer and a 4-point probe, respectively. The optimum structure is SiO2 (30 nm)/Ag (10 nm)/ZnO (30 nm) multilayer, with the highest FOM value of 7.7×10-3 Ω-1.