• 제목/요약/키워드: Flexible rotor-bearing system

검색결과 45건 처리시간 0.024초

자기베어링으로 지지되는 연성축계의 식별 및 강인 제어에 관한 연구 (A Study on the Identification and Robust Control of Flexible Rotor Supported by Magnetic Bearing)

  • 안형준;전수;한동철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.3-6
    • /
    • 2000
  • The magnetic bearing system are intrinsically unstable, and need the feedback control of electromagnetic forces with measured displacements. So the controller design plays an important role in constructing high performance magnetic bearing system. In case of magnetic bearing system, the order of identified model is high because of unknown dynamics included in closed loop systems - such as sensor dynamics, actuator dynamics - and non-linearity of magnetic bearings itself. In this paper the identification and robust control of flexible rotor supported by magnetic bearing are discussed. We measure and identify overall system that contains not only flexible rotor model but also magnetic bearing and time delay. The structured and unstructured uncertainties are modeled that cover variations of natural frequencies, uncertainties in sensor and actuator gains and unmodeled dynamics. And desired performances are specified with several weighting function. Using augmented system that includes identified model, uncertainties, and weighting functions, μ-synthesis is applied to flexible rotor supported with magnetic bearing. The flexible rotor was spin up over the first flexible critical speed.

  • PDF

탄성 로터의 백업베어링 충돌 시 동적 응답 해석 (Dynamic Response Analysis of a Flexible Rotor During Impact on Backup Bearings)

  • 박경조;배용채
    • 동력기계공학회지
    • /
    • 제16권3호
    • /
    • pp.22-28
    • /
    • 2012
  • Active magnetic bearings(AMBs) present a technology which has many advantages compared to traditional bearing concepts. However, they require backup bearings in order to prevent damages in the event of a system failure. In this study, the dynamics of an AMB supported rotor during impact on backup bearings is studied employing a detailed simulation model. The backup bearings are modeled using an accurate ball bearing model, and the model for a flexible rotor system is described using the finite element approach with the component mode synthesis. Not only the influence of the support stiffness, clearance and friction coefficient on the rotor orbit, but also bearing load are compared for various rotor system parameters. Comparing these results it is shown that the optimum backup bearing system can be applicable for a specific rotor system.

100,000 rpm 운전용 원심분리기 로터-베어링 시스템의 회전체동역학 해석 (Rotordynamics of a Centrifuge Rotor-Bearing System for 100,000 rpm Operation)

  • 이안성;김영철;박종권
    • 소음진동
    • /
    • 제8권3호
    • /
    • pp.450-456
    • /
    • 1998
  • A rotordynamic analysis is performed with a centrifuge rotor-bearing system for the raing speed of 100,000 rpm. The system is composed of a centrifuge rotor(or simply the rotor), flexible shaft, motor rotor and shaft, and two support rolling element bearings of the motor shaft. Design goals are to achieve wide separation margins of critical speeds and favorable unbalance responses of the rotor at the associated critical speeds. The latter requirements are especially important as the system crosses multiple numbers of critical speeds and as the system may not have enough separaton margins around the rating speed. As the system adopts an extra-flexible shaft, it is shown that the rotor has satisfactory small unbalance responses over higher criticals while having an unsatisfactory large one at the first critical. To supress this a bumper ring or guide bearing needs to be installed at a suitable location of the flexible shaft. It is also shown that even with the flexible shaft the dynamics of the motor must be incoporated into the full system model to accurately identify the fourth critical speed, which is close to the rating speed, and higher ones. The analysis is based on the finite element method.

  • PDF

Model Validation and Controller Design for Vibration Suppression of Flexible Rotor Using AMB

  • Soo Jeon;Ahn, Hyeong-Joon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제16권12호
    • /
    • pp.1583-1593
    • /
    • 2002
  • This paper discusses the model validation and vibration suppression of an AMB flexible rotor via additional LQG controller. The main difficulty in the vibration suppression of the flexible rotor using AMB is to realize a controller that can minimize resonance without injuring the stabilized rigid modes. In order to solve this problem, simple scheme for system modeling and controller design are developed. Firstly, the AMB flexible rotor is stabilized with a PID controller, which leads to a new stable rotor-bearing system. Then, authors propose the model validation procedure using measured open-loop frequency responses to obtain an accurate model of the AMB flexible rotor system. After that, LQG controller with modal weighting is designed to suppress resonances of the stable rotor-bearing system. Due to the poor controllability and observability of flexible modes compared to rigid ones, balancing of two Gramians is prerequisite for the fair LQG controller design. Simulation with step disturbance and experimental results of unbalance response up to 10,000 rpm verified the effectiveness of the proposed scheme.

탄성 회전체 베어링 계의 불균형 응답 저감을 위한 동흡진기 개발 (Development of Dynamic Vibration Absorber to Reduce Unbalance Response in Flexible Rotor-Bearing System)

  • 유태규;배규현;김길환;홍성욱
    • 한국생산제조학회지
    • /
    • 제21권1호
    • /
    • pp.175-181
    • /
    • 2012
  • This paper presents a novel dynamic vibration absorber (DVA) to suppress the unbalance response of flexible rotor-bearing systems. The DVA unit consists of two DVAs, an adapter to place the DVAs and an adapter frame to locate the adapter. The essential feature of the proposed DVA unit is to place itself on any desirable location of the shaft without disassembling the rotor-bearing system under consideration. A simulation with a 3D element based commercial rotor dynamic software is made to test the possibility of the proposed DVA on the suppression of unbalance response in rotor-bearing systems. Experiments are performed to validate the proposed DVA unit. The simulation and experiments show that the proposed DVA unit is very effective to suppress the unbalance response in rotor-bearing system at designated rotational speeds of interest.

마운트 시스템을 갖는 유연 로터-베어링 시스템의 기초전달 충격 과도응답 해석을 위한 유한요소 모델링 (FE Modeling for the Transient Response Analysis of a Flexible Rotor-bearing System with Mount System to Base Shock Excitation)

  • 이안성;김병옥
    • 한국소음진동공학회논문집
    • /
    • 제17권12호
    • /
    • pp.1208-1216
    • /
    • 2007
  • Turbomachinery such as turbines, pumps and compressors, which are installed in transportation systems, including aircrafts, ships, and space vehicles, etc., often perform crucial missions and are exposed to potential dangerous impact environments such as base-transferred shock forces. To protect turbomachinery from excessive shock forces, it may be needed to accurately analyze transient responses of their rotors, considering the dynamics of mount designs to be applied. In this study a generalized FE transient response analysis model, introducing relative displacements, is proposed to accurately predict transient responses of a flexible rotor-bearing system with mount systems to base-transferred shock forces. In the transient analyses the state-space Newmark method of a direct time integration scheme is utilized, which is based on the average velocity concept. Results show that for the identical mount systems considered, the proposed FE-based detailed flexible rotor model yields more reduced transient vibration responses to the same shocks than a conventional simple model, obtained by treating a rotor as concentrated lumped mass, equivalent spring and a damper or Jeffcott rotor model. Hence, in order to design a rotor-bearing system with a more compact light-weighted mount system, preparing against any potential excessive shock, the proposed FE transient response analysis model herein is recommended.

마운트 시스템을 갖는 유연 로터-베어링 시스템의 기초전달 충격에 대한 유한요소 과도응답 해석 (A FE Transient Response Analysis of a Flexible Rotor-Bearing System with Mount System to Base Shock Excitation)

  • 이안성;김병옥;김영철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.387-392
    • /
    • 2007
  • Turbomachinery such as turbines, pumps and compressors, which are installed in transportation systems such as warships, submarines and space vehicles, etc., often perform crucial missions and are exposed to potential dangerous impact environments such as base-transferred shock forces. To protect turbomachinery from excessive shock forces, it may be needed to accurately analyze transient responses of rotors, considering the dynamics of mount designs to be applied with. In this study a generalized FE transient response analysis model, introducing relative displacements, is firstly proposed to accurately predict transient responses of a flexible rotor-bearing system with mount systems to base-transferred shock forces. In the transient analyses the state-space Newmark method of a direct time integration scheme is utilized, which is based on the average velocity concept. Results show that for the identical mount systems considered, the proposed FE-based detailed flexible rotor model yields more reduced transient vibration responses to the same shocks than a conventional simple model or a Jeffcott rotor. Hence, in order to design a rotor-bearing system with a more compact light-weighted mount system, preparing against any potential excessive shock, the proposed FE transient response analysis model herein is recommended.

  • PDF

로터리 압축기 회전체-베어링계의 동적 거동해석 (Dynamic Behavior Analysis of Rotor-Bearing System for Rotary Compressor)

  • 김태학
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권2호
    • /
    • pp.244-251
    • /
    • 1999
  • Large dynamic loads act on the rotor in rotary compressors. There are unbalance forces due to eccentric rotation parts and gas forces induced by the pressure difference between compression and suction gases. Rotor-journal bearing system is nonlinear since the stiffness and damping coef-ficients of the lubrication oil film are not constant in the bearings. in this paper the program for predicting the behaviors of rotor-journal bearing system of rotary compressor is developed. Finite element modeling is used to analyze the flexible rotor. The numerical results are compared with experimental results.

  • PDF

$H_{\infty}$ 제어기에 의한 능동 자기 베어링 시스템의 강인한 제어계 설계 (Robust Control System Design for an AMB by $H_{\infty}$ Controller)

  • 창유;양주호
    • 동력기계공학회지
    • /
    • 제7권3호
    • /
    • pp.48-53
    • /
    • 2003
  • This paper deals with the control of a horizontally placed flexible rotor levitated by electromagnets in a multi-input/multi-output (MIMO) active magnetic bearing(AMB) system. AMB is a kind of novel high performance bearing which can suspend the rotor by magnetic force. Its contact-free manner between the rotor and stator results in it being able to operate under much higher speed than conventional rolling bearings with relatively low power losses, as well as being environmental-friendly technology for AMB system having no wear and no lubrication requirements. In this MIMO AMB system, the rotor is a complex mechanical system, it not only has rigid body characteristics such as translational and slope motion but also bends as a flexible body. Reduced order nominal model is computed by consideration of the first 3 mode shapes of rotor dynamics. Then, the $H_{\infty}$ control strategy is applied to get robust controller. Such robustness of the control system as the ability of disturbance rejection and modeling error is guaranteed by using $H_{\infty}$ control strategy. Simulation results show the validation of the designed control system and the modeling method to the rotor.

  • PDF

원주방향 급유홈 프로팅링 저널베어링으로 지지된 탄성 회전체의 안정성 (The Stability of the Flexible Rotor Mounted on Circumferentially Grooved Floating Ring Journal Bearings)

  • 정연민;김경웅
    • 대한기계학회논문집
    • /
    • 제16권12호
    • /
    • pp.2205-2215
    • /
    • 1992
  • 본 연구에서는 동 베어링에 대한 해석을 바탕으로 원주방행 급유홈 프로팅링 저널베어링으로 지지된 탄성 회전체의 안정성에 대한 이론을 전개함과 동시에 실험을 통해 동 베어링의 안정성을 조사하고자 한다.