• Title/Summary/Keyword: Flexible method

Search Result 2,793, Processing Time 0.063 seconds

Experimental Verification of Flexible Multibody Dynamic Simulations for A Rotating Beam (회전 외팔보에 대한 유연 다물체 동역학 시뮬레이션의 실험적 검증)

  • Kim, Seong-Su;Gang, Yeon-Jun;Lee, Gyu-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.267-274
    • /
    • 2002
  • Using a flexible rotating beam test bed, experimental verification of a flexible multibody dynamic simulations for a rotating beam model has been carried out. The test bed consists of a flexible arm, harmonic driver reducer, AC servo motor and DSP board with PC. The mechanical ports of the test bed has been designed using 3D CAD program. For the simulation model, mass and moment of inertia of each part of the flexible rotating beam test bed are also obtained from 3D CAD model. In the flexible multibody dynamic simulations, the substructuring model has been established to capture nonlinear effects of the flexible rotating beam. Through the experimental verification, substructuring model provides better results than those from the linear model in the high speed rotation.

A Robust Input Modification Approach for High Tracking Control Performance of Flexible Joint Robot

  • Park, Min-Kyu;Lee, Sang-Hun;Hur, Jong-Sung;Yim, Jong-Guk;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1249-1253
    • /
    • 2004
  • A robust input modification approach to the control of flexible joint robot is presented. In our previous study, we developed an observer based state feedback control for the suppression of residual vibration of a robot. The control was very effective in suppressing the inherent vibration of a flexible joint robot. However it did not meet high performance requirements under high speed motion and model uncertainties. As a solution of the problem, we present an input modification method with robustness against parametric uncertainties. The main idea of the proposed input modification method is to generate a modified reference position command for fast and accurate motion of the robot. Using this proposed method we can reduce the servo delay and settling time by about 60% and substantially improve the path accuracy.

  • PDF

An Optimal Correction Balancing of A High-Speed Flexible Rotor (최적화기법을 이용한 고속 탄성회전체의 밸런싱)

  • 이용복;이동수;최동훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1402-1410
    • /
    • 1995
  • An influence coefficient method with an optimal correction balancing algorithm is developed for balancing a high-speed flexible rotor system. Conventional flexible balancing algorithms such as least square and weighted least square algorithms may not satisfy allowable residual vibration levels in certain speed ranges, while the optimal correction balancing method can be more effective in controlling vibration levels in a target speed. Related analyses were reviewed and applied to a test rig to show the effectiveness of the optimal correction balancing method.

Dynamic Analysis of Flexible Mechanical System (폐쇄계를 포함하는 탄성 기계시스템의 동역학적 해석)

  • 안덕환;이병훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.271-276
    • /
    • 1995
  • This paper presents a systematic method for the dynamic analysis of flexible mechanical systems containing closed kinematic loops. Kinematics between pairs of contiguous flexible bodies is described with the joint coordinates and the deformation modal coordinates. The cut-joint constraint equations associated with the closed kinematic loops are derived, simply using the geometric conditions. The equations of motions are initially written in terms of the joint and modal coordinates using the velocity transformation technique. Lagrange multipliers associated with the cut-joint constraints for closed-loop systems are then eliminated systematically using the generalized coordinate partitioning method, resulting to a minimal set of equations of motion.

A Study on Even Distribution of Workloads Using Simulated Annealing Method on Integrated Layout Design in Cellular flexible Assembly Systems (셀형 유연조립시스템에서 작업부하 균형을 고려한 통합 배치설계에 관한 연구)

  • 정지용;노인규
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.4
    • /
    • pp.63-73
    • /
    • 1998
  • With the success of flexible manufacturing systems(FMSs), flexible assembly systems(FASs) have been developed to automatic factories further. As in a cellular FMS, a celluar FAS is considered as the most flexible and feasible assembly systems configuration. This paper presents a method for the integrated layout design in cellular FASs. Unlike the traditional paper, this paper deals with the formation of cells and the layout of cells for jobs with operation times on different machines. The procedure in this paper consists of two distinct phases. The first phase presents machine arrangement in a double rows flowline. cell formation not to allow intercellular movements, and integrated layout design in cellular FASs considering the characteristics of FAS, layout, and production factors This phase uses older optimal algorithm. The second phase proposes to balance the system with an objective of reducing the degree of workload deviation in the cells. Simulated annealing method is used to balance the system. This phase also shows the integrated layout design in cellular FASs with the cost less than total cost of the first phase.

  • PDF

Modeling and Parameter Identification of the Slung Load System of an Unmanned Rotorcraft using a Flexible Cable

  • Lee, Byung-Yoon;Moon, Gun-Hee;Lee, Dong-Yeon;Tahk, Min-Jea;Oh, Hyun-Shik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.365-377
    • /
    • 2017
  • In this paper, we propose a method to identify the parameters of a rotorcraft slung load system using the modal characteristics of a flexible cable. The proposed method estimates the length of the cable and the mass of the payload by means of a frequency analysis. Dynamic equations of the slung load system with the flexible cable are derived using Udwadia-Kalaba equation (UKE) in order to build a simulation program, and the similarity of the simulated slung load movement is verified by comparison with flight test results. Using the computer simulation program, we show that the proposed method works well within various parameter ranges.

Dynamic Analysis of a Body Moving on a Flexible Structure (유연한 구조물 위를 주행하는 물체의 동역학적 해석)

  • 이기수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1674-1684
    • /
    • 1994
  • An efficient iterative method is presented for the dynamic analysis of bodies moving on flexible structures. In contrast to traditional approaches, the nominal motion of the body is considered here as an unknown. The correct contact forces between the bodies and the flexible structures are computed by an iterative method reducing the specially defined error vectors to zero, and thus satisfying the constraints between the bodies and the structures. Even thought only simple equations of motions and simple time integrators are adopted, the correct solutions are economically obtained and the Timoshenko paradox is completely resolved. Numerical simulations are conducted demonstrate the accuracy and reliability of the solution and to compare the results with the reference.

Dynamic Analysis of a Flexible Structure in Motion (운동 중인 유연한 구조물의 동적 해석)

  • Sin Young Lee
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.390-395
    • /
    • 2003
  • Moving flexible structures such as transfer systems in press machine, crane, working table of machine tools have vibration problems because of starting, feeding and stopping. An analysis method is suggested and experimentally studied in order to solve a vibration problem of a moving flexible structure. In this method, the concepts of substructure synthesis method and semi-static displacement including rigid body mode were used. Total deformation of a structure was assumed to be composed of quasi-static and dynamic components. Experimental results from an elementary model of a transfer feeder showed good agreements with computational results.

  • PDF

Nonlinear $H_2/H_\infty/LTR$ Control of the Parallel Flexible Inverted Pendulum Connected by a Spring (스프링 연결 병렬형 탄성 역진자의 비선형 $H_2/H_\infty/LTR$ 제어)

  • 한성익
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.5
    • /
    • pp.356-366
    • /
    • 2000
  • In this paper, a nonlinear $H_2/H_\infty/LTR$ control for the flexible inverted pendulum of a parallel type with Coulomb friction is presented. The dynamic equation for this system is derived by the Hamilton's principle and assumed-mode method. This hard nonlinear system can be modeled by a the quasi-linear state space model using the REF method. It is shown that the $H_2/H_\infty$ control can be applied to the nonlinear controller design of the system having Coulomb frictions if the proper LTR conditions are satisfied. In order to present the usefulness of the suggested control method, the nonlinear $H_2/H_\infty/LTR$ controller is designed to control the Position of the end point of the flexible inverted pendulum that has Coulomb frictions present in actuator parts. The results are given via computer simulations.

  • PDF

Fabrication of Large-Scale Single-Crystal Organic Nanowire Arrays for High-Integrated Flexible Electronics

  • Park, Gyeong-Seon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.266.1-266.1
    • /
    • 2013
  • Large-scale single-crystal organic nanowire arrays were generated using a direct printing method (liquidbridge- mediated nanotransfer molding) that enables the simultaneous synthesis, alignment and patterning of nanowires from molecular ink solutions. Using this method, single-crystal organic nanowires can easily be synthesized by self-assembly and crystallization of organic molecules within the nanoscale channels of molds, and these nanowires can then be directly transferred to specific positions on substrates to generate nanowire arrays by a direct printing process. Repeated application of the direct printing process can be used to produce organic nanowire-integrated electronics with two- or three-dimensional complex structures on large-area flexible substrates. This efficient manufacturing method is used to fabricate all-organic nanowire field-effect transistors that are integrated into device arrays and inverters on flexible plastic substrates.

  • PDF