• 제목/요약/키워드: Flexible method

검색결과 2,795건 처리시간 0.031초

병진 운동 탄성암의 선단 위치제어를 위한 역동역학 (Inverse Dynamics for the Tip Position Control of the Transiational Motion Flexible Arm)

  • 방두열;이성철;장남정이;저강광
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1991년도 추계학술대회 논문집
    • /
    • pp.155-159
    • /
    • 1991
  • This paper is a study on the Inverse dynamics of a one-1ink flexible robot arm which is control led by the transiational base motion. The system is composed of the flexible arm, the mobil stage, a DC servomotor, and a computer. The arm base is shifted so that the tip follows a desired path function. The tip Rotten is measured by the laser displacement sensor. The governing equations are based on the Bernoullie-Euler beam theory and solved by applying the Laplace transform method and then the numerical inversion method to the resulted equations. Tip responses obtained both theoretically and experimentally are in good agreement with the desired trajectory, which shows that the scheme of inverse dynamics is effective for the open-loop endpoint positioning of the flexible am driven by the translation stage.

  • PDF

순환적으로 결합되는 정온기들을 갖는 $N{\sigma}T$ 분자동역학 전산모사에 적용한 외연적 적분기법 (Explicit integration algorithm for fully flexible unit cell simulation with recursive thermostat chains)

  • 정광섭;조맹효
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.512-517
    • /
    • 2007
  • In the previous development of the recursive thermostat chained fully flexible cell molecular dynamics simulation, implicit time integration method such as generalized leapfrog integration is used. The implicit algorithm is very much complicated and not easy to show time reversibility because it is solved by the nonlinear iterative procedure. Thus we develop simple, explicit symplectic time integration formula for the recursive thermostat chained fully flexible unit cell simulation. Uniaxial tension test is performed to verify the present explicit algorithm. We check that the present simulation satisfies the ergodic hypothesis for various values of fictitious mass and coefficient of multiple thermostat system. The proposed method should be helpful to predict mechanical and thermal behavior of nano-scale structure.

  • PDF

고유구조지정법을 이용한 유연구조물의 스필오버 억제방법 (A Spillover Suppression Method in a Flexible Structure Using Eigenstructure Assignment)

  • 최재원;박운식
    • 제어로봇시스템학회논문지
    • /
    • 제6권11호
    • /
    • pp.955-962
    • /
    • 2000
  • Although large space structures(LSS) such as a space station, a solar power station satellite, etc., are theoretically distributed parameter and infinite-dimensional systems, they have to be modeled into a lumped parameter and large finite-dimensional system for control system design. Besides, there remains the fundamental problem that the modeled large finite-dimensional system must be controled with a much smaller dimensional controller due to the limitation of computing resources. This causes the spillover phenomenon which degrades control performances and reduces the stability margin. Furthermore, it may destabilize the entire feedback control system. In this paper, we propose a novel spillover suppression method in the active vibration control of large flexible structures by using eigenstructure assignment. Its validity and effectiveness are investigated and verified by the numerical experiments using a simply supported flexible beam, which is modeled to have four controlled modes and eight uncontrolled modes.

  • PDF

선단 부하를 갖는 병진운동 단일 링크 탄성암 선단의 closed-loop 제어

  • 정훈;이성철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 춘계학술대회 논문집
    • /
    • pp.185-189
    • /
    • 1992
  • This paper prsents an end-point control of a one-link flexible arm with a payload by using closed loop control. Tip position of arm is shifted by the base motion according to DC servomotor, whivh is driven by a feedback signal composed of the tip displacement and the estimated tip velocity. The shifting problem of the arm from initial position to desired position is considered by the variation of the displacement gain Gd and velocity agin Gv. Theoretical results are obtained by applying the method of the Laplace transform to the governing equations and the method of numerical inversion. This system is composed of a flexible arm with payload, DC servomotor, and a ballscrew mechanism. The flexible arm is mounted on a mobile stage driven by a servomotor and ballscrew. In controlling the tip displacement of flexible arm, the fundamental bode vibration is supressed more rapidly with an increase of the velocity feedback gain Gv and the feedback displacemenmt gain Gd. Theretical responses are approximately in good agreement with those obtained experimentally.

역동역학에 의한 병진운동 탄성 Arm 선단의 위치제어 (The End-Point Position Control of a Translational Flexible Arm by Inverse Dynamics)

  • 이성철;방두열
    • 한국정밀공학회지
    • /
    • 제9권4호
    • /
    • pp.136-146
    • /
    • 1992
  • This paper provides the end-point positioning of a single-link flexible robot arm by inverse dynamics. The system is composed of a flexible arm, the mobile ballscrew stage as an arm base, a DC servomotor as an actuator, and a computer. Actuator voltages required for the model of a flexible arm to follow a given tip trajectory are formulated on the basis of the Bermoullie-Euler beam theory and solved by applying the Laplace transform method, and computed by the numerical inversion method proposed by Weeks. The mobile stage as the arm base is shifted so that the end-point follows the desired trajectories. Then the trajectory of end-point is measured by the laser displacement sensor. Here, two kinds of functions are chosen for the given tip trajectories. One is what is called the bang-bang acceleration profile and the other is the Gaussian velocity profile.

  • PDF

유연보의 진동제어를 위한 구조계와 제어계의 동시최적화 (Simultaneous Optimization of Structural and Control Systems for Vibration Control of Flexible Beams)

  • 김창동;정의봉
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3127-3135
    • /
    • 1994
  • An approach to the simultaneous optimal design of structure and control system for large free-free flexible beam is presented. The flexible beam is modeled by the finite element method. And the reduced model of small degree of freedom is constructed by use of modal analysis. The tapered beam is considered so that the number of design variables is not dependent on the increasing number of finite elements. The width of several points of tapered beam and control gain are taken as design variables. The shape of beam and control gain are optimized simultaneously for the minimum weight of total structure including control system subject to the constraints of the magnitude of displacement of beam. It is shown that the simultaneous optimal design of structure and control systems is indeed useful.

ADAMS를 이용한 가동 노즐 성능 평가 기법 (Movable Nozzle Performance Analysis by Using ADAMS)

  • 김중근;장홍빈
    • 한국추진공학회지
    • /
    • 제13권4호
    • /
    • pp.30-35
    • /
    • 2009
  • 추진기관의 추력 방향을 조절하기 위해 널리 적용되고 있는 flexible seal 노즐에서, 노즐의 회전 중심인 유효 피봇의 위치 변화가 노즐의 구동성능에 미치는 영향을 컴퓨터를 이용한 수치실험으로 분석하였다. 실험 조건은 two-level factorial design ($2^3$-Design)의 실험계획으로 결정하고, 실험은 범용 동력학 해석 프로그램인 ADAMS를 적용하였다. 해석결과, 유효 피봇의 반경 방향 위치 변화가 축 방향 위치 변화보다 구동성능에 미치는 영향이 컸으며, 유효 피봇의 위치 변화가 구동 성능에 미치는 영향은 구동방식에 크게 영향을 받음을 확인하였다.

Dynamic Elastica에 의한 유연매체의 거동해석 (Analysis of Flexible Media Behavior by Dynamic Elastica)

  • 홍성권;지중근;장용훈;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.600-605
    • /
    • 2004
  • In many machines handling lightweight and flexible media such as magnetic tape drives, xerographic copiers and sewing machines, the media must transit an open space. It is important to predict the static and dynamic behavior of the sheets with a high degree of reliability. The nonlinear theory of the dynamic elastica has often been used to a nonlinear dynamic deflection model. In this paper, the governing equation is derived and simulated by the finite differential method. The parametric cubic curve is applied for defining the guide shape. The dynamic contact conditions suggested by Klarbring is used to predict the direction of the flexible media according to the initial velocity and the friction coefficient. The analysis is also compared to the conventional model, showing that after contacting a $45^{\circ}$ wall, the directions of flexible media of two models are different.

  • PDF

Flexible Pressure Sensors Based on Three-dimensional Structure for High Sensitivity

  • Jung, Young;Cho, Hanchul
    • 센서학회지
    • /
    • 제31권3호
    • /
    • pp.145-150
    • /
    • 2022
  • The importance of flexible polymer-based pressure sensors is growing in fields like healthcare monitoring, tactile recognition, gesture recognition, human-machine interface, and robot skin. In particular, health monitoring and tactile devices require high sensor sensitivity. Researchers have worked on sensor material and structure to achieve high sensitivity. A simple and effective method has been to employ three-dimensional pressure sensors. Three-dimensional (3D) structures dramatically increase sensor sensitivity by achieving larger local deformations for the same pressure. In this paper, the performance, manufacturing method, material, and structure of high-sensitivity flexible pressure sensors based on 3D structures, are reviewed.

점성감쇠력이 회전탄성원판에 미치는 영향 (Effect of viscous damping force subjected to a rotating flexible disk)

  • 공대위;주원구
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.185-190
    • /
    • 2001
  • Rotating disks are used in various machines such as floppy disks, hard disk, turbines and circular sawblades. The problems of vibrations of rotating disks are important in improving these machines. Many investigators have dealt with these problem. Specially, vibrations of a rotating flexible disk taking into account the effect of air is difficult problem in simulation. The governing equation of a rotating flexible disk coupled to the surrounding fluid is investigated by a simple mathematical model. And several important parameters concerned with the stability of a rotating flexible disk are defined. Coupling strength between air and rotating flexible disk is proportional to square of disk radius directly and square root of the all of bending rigidity, disk density and thickness inversely. Lift-to-damping coefficient has relation to the onset of disk flutter.

  • PDF