• Title/Summary/Keyword: Flexible leg

Search Result 28, Processing Time 0.032 seconds

The Effect of Low-dye Taping on Muscle Activity during Single-leg Standing in People with Flatfoot (편평발에서 Low-dye 테이핑이 한발 서기 동안 근활성도 변화에 미치는 영향)

  • Park, Min-Chull
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.4
    • /
    • pp.533-538
    • /
    • 2013
  • PURPOSE: This study was performed to investigate the effect of Low-dye Taping on muscle activity during single-leg standing in subjects with flexible flatfoot. METHODS: Thirteen able-body volunteers who had flexible flatfoot were recruited for this study. Subjects were measured navicular drop test to evaluate pronation of foot and muscle activity during single-leg standing before and after taping. The muscle activity was recorded using surface EMG from the tibialis anterior and the peroneus longus during single-leg standing on stable and unstable surface. RESULTS: The results show that the navicular drop height and the tibialis anterior muscle activity were significantly decreased after Low-dye taping. CONCLUSION: The results suggest that Low-dye taping could be useful in managing overuse of the tibialis anterior by reducing their level of activation during single-leg standing.

Development of a pipeline robot like foxtail (강아지풀 형상을 닮은 관내 주행로봇 개발)

  • Choi, Yong-Ho;Yang, Hyun-Suk;Park, No-Chul
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1167-1172
    • /
    • 2007
  • Generally inpipe robot needs force above standing for contacting robot to pipe. If the environment of the pipe-inside does not change, there is not a problem. But if the pipe radius change, or occur the obstacle which it does not intend, problem gets. So it uses a different system and must know an environment change, and changing the shape or a form of the robot. The research uses the flexible leg and is the robot which is adapted to the environment change of the pipe. The advantage of this robot is possible to move when it does not need to recognize a change of environment of pipe. Leg is bend with one direction. When it moves part that there are legs effect of leg direction the robot is moved with only one direction. If friction between legs and pipe is sufficient, not only verticality pipe moving, but also curved pipe moving. Also the obstacle of the pipe inside occurs and the diameter of the pipe inside changes, this robot can move if it does not use another system or device.

  • PDF

Dynamic Behavior Analysis of Floating Offshore Wind Turbine Including Flexible Effects of Tower and Blade (타워와 블레이드의 탄성효과를 고려한 부유식 해상풍력발전기의 동적거동해석)

  • Jung, Hye-Young;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.905-911
    • /
    • 2012
  • To establish a floating offshore wind turbine simulation model, a tension leg platform is added to an onshore wind turbine. The wind load is calculated by using meteorological administration data and a power law that defines the wind velocity according to the height from the sea surface. The wind load is applied to the blade and wind tower at a regular distance. The relative Morison equation is employed to generate the wave load. The rated rotor speed (18 rpm) is applied to the hub as a motion. The dynamic behavior of a 2-MW floating offshore wind turbine subjected to the wave excitation and wind load is analyzed. The flexible effects of the wind tower and the blade are analyzed. The flexible model of the wind tower and blade is established to examine the natural frequency of the TLP-type offshore wind turbine. To study the effect of the flexible tower and blade on the floating offshore wind turbine, we modeled the flexible tower model and flexible tower-blade model and compared it with a rigid model.

The Changes of Balance Performance by Low-dye Taping Application on Flexible Flatfoot (유연성 평발에 적용한 로우다이 테이핑에 의한 균형 수행력의 변화)

  • Eom, Ju-Ri;Moon, Dong-Chul;Kim, Jong-Soon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.4
    • /
    • pp.355-361
    • /
    • 2014
  • PURPOSE: The purpose of this study was to determine the immediate effect of low-dye taping on balance performance in subjects with flexible flatfoot. METHODS: Fifteen asymptomatic volunteers who had flexible flatfoot (age, $21.7{\pm}1.81$years; height, $164.80{\pm}7.57cm$; weight, $56.47{\pm}10.48kg$) were participated for this study. Navicular drop test was used to evaluate pronation of foot in three different conditions; non-weight bearing position without low-dye taping, weight bearing position without low-dye taping, weight bearing position with low-dye taping. And balance performance (anterio/ posterior, medial/lateral, and overall) was evaluated using the Biodex Balance System in three different conditions; one-leg standing without low-dye taping, one-leg standing with low-dye taping, and one-leg standing with low-dye taping in one week later. Repeated-measures analysis of variance (ANOVA) was used to assess navicular height and balance performance across the three testing conditions. RESULTS: Significant and clinically meaningful improvement in navicular height was found after application of the low-dye taping. However, there was no statistically significant change in balance performance. CONCLUSION: The results of this study provide evidence to suggest that low-dye taping does not affect balance performance.

Dynamic Response Characteristics of Tension Leg Platforms in Waves (인장계류식 해양구조물의 동적응답 특성)

  • Lee, C.H.;Son, Y.K.
    • Journal of Power System Engineering
    • /
    • v.2 no.2
    • /
    • pp.81-86
    • /
    • 1998
  • The dynamic response characteristics of Tension Leg Platforms(TLPs) in waves are examined for presenting the basic data for design of TLPs. The numerical approach is based on a combination of the three dimensional source distribution method and the dynamic response analysis method, in which the superstructure of TLP is assumed to be flexible instead of rigid. Restoring forces by hydrostatic pressure on the submerged surface of a TLP have been accurately calculated by excluding the assumption of the slender body theory. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in the motion and structural analysis. Numerical results are compared with the experimental ones, which are obtained in the literature, concerning the motion and tension responses of a TLP in waves. The results of comparison confirmed the validity of the proposed approach.

  • PDF

A Dynamic Response Analysis of Tension Leg Platforms in Waves (I) (인장계규식 해양구조물의 동적응답해석(I))

  • 구자삼;김진하;이창호
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.161-172
    • /
    • 1995
  • A numerical procedure is described fro predicting the motion and structural responses of tension leg platforms(TLPs) in waves. The developed numerical approach is based on a combination of a three dimensional source distribution method and the dynamic response analysis method, in which the superstructure of TLPs is assumed flexible instead of the rigid body assumption used in tow-step analysis method. Both the hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural whole structure are formulated using element-fixed coordinate systems which have the origin at the node of the each hull element and move parallel to a space-fixed coordinate system. Numerical results are compared with the experimental and numerical ones, which are obtained in the literature, concerning the motion and structural responses of a TLP in waves. The results of comparison confirmed the validity of the proposed approach.

  • PDF

Development of a Dynamic Response Analysis Method of Tension Leg Platforms in Waves (인장 계류식 해양구조물의 동적응답 해석법의 개발)

  • 구자삼;이창호;홍봉기
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.133-146
    • /
    • 1993
  • A numerical procedure is described for predicting the motion and structural responses of tension leg platforms (TLPs) in waves. The developed numerical approach is based on combination of a three dimensional source distribution method and the dynamic response analysis method, in which the superstructure of TLPs is assumed flexible instead of the rigid body assumption used in usual two-step analysis method, proposed by Yoshida et. al. .The hydrodynamic interactions among TLP members, such as columms and pontoons, are included in the motion and structural analyses. Numerical results are compared with the experimental and numerical ones, which are obtained in the literature, of the motion and structural responses of a TLP in waves. The results of comparison confirmed the validity of the proposed approach.

  • PDF

Sliding Mode Control of Three-Phase Four-Leg Inverters via State Feedback

  • Yang, Long-Yue;Liu, Jian-Hua;Wang, Chong-Lin;Du, Gui-Fu
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.1028-1037
    • /
    • 2014
  • To optimize controller design and improve static and dynamic performances of three-phase four-leg inverter systems, a compound control method that combines state feedback and quasi-sliding mode variable structure control is proposed. The linear coordinate change matrix and the state variable feedback equations are derived based on the mathematical model of three-phase four-leg inverters. Based on system relative degrees, sliding surfaces and quasi-sliding mode controllers are designed for converted linear systems. This control method exhibits the advantages of both state feedback and sliding mode control. The proposed controllers provide flexible dynamic control response and excellent stable control performance with chattering suppression. The feasibility of the proposed strategy is verified by conducting simulations and experiments.

Biped Gait Generation based on Linear Inverted Pendulum Mode On Flexible Terrain

  • Ueno, Satoshi;Igata, Kazuma;Kumon, Makoto;Mizumoto, Ikuro;Iwai, Zenta
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.203-208
    • /
    • 2003
  • In this paper, gait generation algorithm based on Linear Inverted Pendulum Mode is extended considering that the terrain is uncertain and flexible. Deformation of the soft terrain by the weight of the biped robot is taken into account to design the desired motion of the swing leg. Landing time disagreement caused by dynamics of the robot is also considered and a method to adjust gait is proposed. Results of numerical simulation show the effectiveness of the proposed method.

  • PDF

Effect of Medial Wedge on Muscle Activity of Lower Limb in Healthy Adults During One Leg Standing (한 다리 서기 시 내측 쐐기(wedge)의 적용이 하지 근활성도에 미치는 영향)

  • Hong, Ji-A;Kim, Min-Hee;Jung, Doh-Heon;Lim, One-Bin;Yi, Chung-Hwi
    • Physical Therapy Korea
    • /
    • v.18 no.2
    • /
    • pp.60-66
    • /
    • 2011
  • Foot posture is important in the development of the musculoskeletal structure in the lower limbs because it can change the mechanical alignment. Although foot orthotics are widely used for the correction of malalignments in the lower extremities, the biomechanical effects of wedges have not yet been cleared. The aim of this study was to investigate whether medial wedges affect the electromyographic (EMG) activity of the knee and hip joints in healthy adults that are performing one leg standing. Seventeen healthy volunteers performed the one leg standing under two foot conditions: A level surface, and a $15^{\circ}$ medial wedge. The subjects' EMG data for the gluteus maximus (Gmax), gluteus medius (Gmed), tensor fasciae latae (TFL), biceps femoris (BF), vastus lateralis (VL), and vastus medialis oblique (VMO) were recorded, along with the surface EMG, and all were analyzed. The EMG activity of the Gmed and TFL had significantly decreased under the medial wedge condition during one leg standing. Further study is needed in order to investigate whether medial wedges influence the EMG activity and kinematic data of the knee and hip joints as well as the ankle joints in adults with flexible flatfoot, while they are performing one leg standing.