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1. Introduction
 It is necessary for biped robots to achieve dynamic walk in
order to be efficient and practical. For a couple of decades,
dynamic walk has been studied by many researchers.
Vukobratovic [1] considered Zero Moment Point (ZMP) firstly
which showed stability margin of dynamic gait. ZMP is one of
the most widely used concept to control dynamic biped gait.
Another useful model of dynamic gait is Inverted Pendulum
Mode (IPM) which gives a good approximation of human’s
walking motion. Miyazaki and Arimoto [2] studied the nature
of dynamic walk and they revealed that the motion could be
modeled by a single inverted pendulum. Furushou et.al [3]
developed a gait synthesis algorithm based on IPM.
Considering geometrical constraints on the path of the
dynamic walk, Kajita [4][5][6] showed that dynamics of
center of mass (COM) of a biped robot with mass-less legs
were able to become a conservative linear system without any
approximation. Gait (walking speed, stopping, and changing
walking direction and so on) could be controlled by
controlling the value of the constant of the motion which was
called orbital energy. Owing to this simplicity, especially for
small humanoids it is practical to implement gait generation
algorithm based on LIPM.
 Considering practical use of biped robots, they are required
to be able to walk on rough and flexible terrain such as soft
carpets, swamps and so on which can be found in human’s
daily environment. To this end, in this paper uncertainty of the
environment caused by flexible terrain is taken into account.
This uncertainty causes earlier (or later) contact between the
tip of the swing leg and the terrain than the expected moment.
Since the moment when the biped robot switches the support
leg and the swing leg is significantly important in order to
control the value of the orbital energy, this disagreement in the
contact leads poor performance or it even makes the biped
robot fall down. In order to overcome this difficulty, in this
study an adaptive scheme to control the timing of the contact
is proposed to generate robust gait.
 The disagreement in contact between the swing leg and the
terrain is also caused by dynamical effect of the motion of the
swing leg. This effect was neglected in the original LIPM
because the biped robot was modeled with mass-less legs. It is
difficult to control the tip of the swing leg of the biped robot
on uncertain flexible terrain. This paper shows that the
adaptive gait generation algorithm is also effective to this
tracking error of the swing leg from the desired trajectory.
 In the following section, the dynamical model of the biped
robot is shown. The adaptive gait generation algorithm is
proposed in Section3. Numerical simulation in Section4

validates the proposed method and conclusions follow
(Section5)

2. Biped Robot System
 In this study, the biped robot is modeled by 4 links
corresponding to shank and thigh as shown Fig.1. It is
assumed that the biped robot moves in 2-dimensional sagittal
plane. The attitude of the biped robot is denoted by angles of
 Joints ( )4321 ,,, θθθθ  are shown in Fig.1. The tip of the
support leg of the biped robot is denoted as ( )00 , yx  in the
inertial frame. And it is supposed that each link is uniform
rigid body, and that the COM of each link lies middle of it.
Denote length and mass of link1 and link2 as 21, LL 21 , mm
respectively. It is assumed that the biped robot does not have
any a priori information of the terrain, e.g. irregular. Actuators
are attached on each joint and tips of legs of the biped robot.
Therefore, the attitude of the biped robot is controlled by
control inputs(torque) generated by each motor. The motion
equation of the biped robot is given by

( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
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Fig.1: Robot system
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 The terrain is modeled by soft spring-damper system, where
the spring coefficient and damper coefficient are k and d
respectively. Values of k  and d  are set to model the flexible
terrain. Let 21  and FF denote reaction forces exerting on the
support leg and the swing leg from the terrain respectively. Let
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xV1 denote the velocity of the tip of the support leg in x axis,
and let yVY 11  and denote displacement and velocity of the tip of

the support leg in y axis. Denoting 1F as ( )yx FFF 111 ,= , the
model of reaction forces from the terrain is given as follows.
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Similarly, reaction forces on the support leg is also modeled as
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where yxyx FFVYV 22222  and ,,, are defined as in the support leg.
Then, the relation between reaction forces from the terrain and
generalized forces affecting to joints of the biped robot is
following.

( ) ( ) 2
T
21

T
1 FqJFqJR +=                            (2.6)

where 1J and 2J  are Jacobi matrices from the origin of inertia
frame to the contact point of the support leg and the swing leg
respectively.

3.Control Algorithm
 In section 3.1, LIPM[4][5][6] is introduced shortly. After that,
it is considered that the biped robot walks on flexible terrain in
section 3.2 and controller is designed in section 3.3. In this
case, reaction forces may disturb the value of orbital energy,
therefore the algorithm extended in section 3.4 in order to
make the biped robot be able to walk on the flexible terrain.

3.1 LIPM
 In LIPM[4][5][6], the biped robot is modeled by mass
point(mass: m ) and mass less leg(length: l ) as shown in Fig.2.
Force( F ) to expand and contract leg is given as input.
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Fig.2: Linear Inverted Pendulum Model

When the mass m  is constrained on the line cykxy += ,
dynamics of the mass m  become
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where g is the constant of gravitational acceleration. Consider
the following function.
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where x  is the position of the mass m  and x&  is time
derivative of x . This function is conservative and it is called
“Orbital energy”. E represents the motion of COM i.e. the
mass is moving “forward” when 0>E , and it changes the
direction of it’s motion when 0<E . In this sense walking
motion is able to be controlled by changing the value of E .
 Assume following assumptions:

1. The swing leg and the support leg switches instantaneously.
2. The velocity of COM does not change by switching legs.
Then, the relation between the value of E at nth-step, denoted
as nE , and that at n+1th-step, denoted as 1+nE is written as
follows.
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where L is the length of the stride of the gait. Given L ,
1+nE is equal to the desired value of E , denoted as dE , if the

biped robot switches legs when ( ) ff xtx =  where
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The fff tvx  and ,,  are derived as follow, where fv denotes

( )ftx& . Firstly, by solving (3.1) for ( ) ( ) ii vxxx =−= 0,0 ,
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Let the value of 1+nE be given as desired orbital energy dE
which is given as a parameter. And eliminating fv  from (3.7)

and (3.8), fx is given as (3.4).
 Since the orbital energy does not change through a walking
cycle, nE can also be denoted as the following.
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From (3.4), (3.8) and (3.9), fv is given as
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From (3.5), (3.6), (3.9), and (3,10)
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 This means that the gait generating algorithm based on LIPM
gives the moment of leg switching with respect to the position
of COM. Therefore it is important that the biped robot
switches legs at the adequate moment.

3.2 Reference trajectory of swing leg
 In this subsection, the desired gait motion based on LIPM for
4 link biped robot is extended in order to take the flexible
terrain into account. Boundary conditions at the beginning and
the end of one walking cycle are shown in Fig.3 and Fig.4.
The dashed circle of Fig.3 and Fig.4 denote the position of
COM of the biped robot.

nffii SVXVX  and ,,, corresponding to fffii tvxvx  and ,,,  and
other parameters are defined in Table.1 which shows notations
of parameters in figures. The desired motion of COM is same
as in original LIPM[4][5][6]. The height of COM is



constrained on a line as in Fig.2.
Table.1: Parameters of Fig3 and Fig4
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Next, the desired trajectory of the swing leg is defined by
using the parameters of boundary conditions. They are
denoted as ( ) ( )ςς dydx UU    and   . ( ) ςdxU  denotes the
desired x position from COM to the tip of the swing leg.

( ) ςdyU  denotes the desired y position from the tip of the
support leg to the tip of the swing leg. They are required to
satisfy boundary conditions shown in Fig.3 and Fig.4.
Conditions that ( )ςdxU  must satisfy are followings.

( ) ( )ix XLU −−=0                               (3.12)
( ) fx XLSU −=                                 (3.13)

( ) idx VU −=0&                                    (3.14)

( ) fdx VSU −=&                                   (3.15)
(3.12) and (3.13) are conditions with respect to step length,

and (3.14) and (3.15) are conditions with respect to velocity
such that the relative velocity between the tip of the swing leg
and terrain becomes zero. They mean that the tip of the swing
leg performs smooth takeoff and landing in x axis. In this
study, ( )ςdxU  is designed by third order polynomial as
follows.
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The objective of this study is to extend LIPM for biped robot
to be able to walk on the flexible terrain. As expressed above,
the timing of leg switching is important. When the terrain is
soft or deformable, the biped robot sinks into the terrain.
Hence, the swing leg contacts with the terrain earlier than the
expected moment. This mismatch disturbs the system, and it
may make the biped robot fall down. In order to overcome this
difficulty, the effect of flexible terrain is taken into account.
For simplicity it is assumed that the terrain is even, and
flexibility of the terrain is uniform. The following is assumed.

if δδ =                                       (3.17)

Taking this into consideration, dyU is required to satisfy
following conditions.

( ) idyU δ−=0                                   (3.18)

( ) ifdy SU δδ ==                                (3.19)
(3.18) and (3.19) are conditions of the position of the tip of the
swing leg in y  axis when the swing leg takes off or touches
down. Since it is assumed that the biped robot does not have a
priori information about the terrain such as its irregularity or
hardness, it is difficult to make the tip of the swing leg contact
the terrain at the desired moment exactly. When the desired
velocity vanishes at the desired moment of the contact, the tip
stays near the terrain before the contact and it may cause
unexpected collision. To avoid this, ( )ςdyU is designed as the
velocity of the swing leg does not vanish as the following.
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Fig.5:Relation of design parameters
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3.3 Controller Design
 Since the biped robot has dynamics (2.1), a controller is
needed to compute torque τ  to make the biped robot follow
the desired trajectory defined above. The desired position of
the tip of the swing leg is defined as yx QQ  and  in the frame



which has its origin at the joint of lumber part of the biped
robot. From Fig.5, following equations are given.

( ) ( ) 1CxUQ dxx −+= ςς                           (3.21)
( ) 2CUQ dyy +−= ς                               (3.22)

where 21  and CC  are parameters as shown in Fig.5. Solving
inverse kinematics of (3.21) and (3.22), the desired values
of 43  and θθ  are given and they are denoted as 43  and dd θθ
respectively.
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 Next, denote the desired value of 2θ  such that the height of
COM of the biped robot becomes desired value as 2dθ . By
algebra(refer to Appendix)
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where γνµφ  and ,, are functions of 431  and , θθθ (refer to
Appendix).
Let

[ ]T4321 dddD θθθθ=θ .                      (3.26)
And τ is defined as the following feedback control law.

( ) T
21 θ&KθθKτ −−−= D                          (3.27)

where 21 KK  and  are gain matrices. Note that ankle torque is
set to be zero in this control law because of LIPM[4][5][6]

3.4 Orbital energy adjustment
 In the above section, the desired trajectory of the swing leg is
designed in consideration of boundary conditions for flexible
terrain. But it is not sufficient only to use walking algorithm
proposed in preceding sections, because dynamics of biped
robot that includes terrain model is significantly complex. For
example, the swing leg cannot be controlled to track the
desired trajectory perfectly, since the swing leg has inertia.
Hence the motion of the swing leg is delayed to the desired
motion of the swing leg and the biped robot can not make the
swing leg touch down at the desired moment. Considering
undesired collision between the swing leg and the terrain, it is
not acceptable that the impulsive force effects to the motion of
COM of the biped robot. It is common that high precision
position control makes the robot stiff. In that case, the
collision at the tip of the swing leg effects the motion of COM
significantly. And big control inputs make the contacting point
slip because it occurs moment of rotation. Hence control
torques are required to be as small as possible. And, the
control of the swing leg without delay is very difficult. The
delay may lead that the value of orbital energy does not
converge to the desired value. It means that it is difficult for
the biped robot to achieve the desired steady gait.
 For these reasons, we propose the way that makes the orbital
energy converge to the desired value in prospect of landing
time disagreement. The delay mentioned above is denoted as
α and some quantities are defined as follow.

step1th - of  timelanding: nt f
−  , stepth 1 of : n-n αα−

step1th - of  timelanding desired: nS −

Since −− St f  and are available at nth-step, −
nα is given as the

following.
−−− −= St fnα                                   (3.28)

Since −
nα is obtained at each step by (3.28), the value of −

nα
may change step by step. Therefore, let ( )nα  be given as the
value of average from the first step to nth-step.
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∑
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n
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It is assumed that ( )nα is constant through the nth walking
cycle.
 Next, when the landing time has the delay of ( )nα , the
desired landing position changes to ( )( )nSUdx α+ . Therefore,

( )tUdx is multiplied by an appropriate coefficient to correct the
desired trajectory of the swing leg in x  axis direction. The
coefficient is denoted by ε . Fig.6 shows the attitude of
landing with the use of ε . The orbital energy before(nth-
step) and after(n+1th-step) leg switching are given by
followings.
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From (3.33) and (3.34)
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If the right hand side in (3.33) becomes zero, the orbital
energy after leg switching becomes the desired value. Denote
the value of ε which makes the right hand side in (3.33) zero
as 0ε and
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Therefore, the displacement of the tip of the swing leg
in x axis direction is controlled in order to follow

( )( )nSU x αε +×0 . From above, if 10 >ε , it means that the
swing leg lands on farther side than the original landing point
from the tip of the support leg. If 10 =ε  , it means that the
swing leg lands on the original landing point from the tip of
the support leg. If 10 <ε  , it means that the swing leg lands
on nearer side than the original landing point.
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Fig.6:Parameters of landing with ε
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4.Simulation
Simulation was executed by solving the differential equation
(2.1). The design parameters are given Table.2.

Table.2: Simulation parameters
Simulated time t: 10[sec]
Desired orbital energy

dE:
0.5[J]

Desired height of COM 0.5[m]
Mass of link1 1: m 1[kg]

Mass of link2 2: m 10[kg]

Length of link1 1: L 0.5[m]

Length of link2 2: L 0.5[m]
Moment of inertia of link1 0.021[ 2mkg ⋅ ]
Moment of inertia of link2 0.21[ 2mkg ⋅ ]
Acceleration of gravity

g:
9.81[ sec/m2 ]

Step length L: 0.15[m]
Maximum clearance of
the swing leg from the
terrain h:

0.07[m]

Spring coefficient of the
terrain k:

9500[N/m]

Damper coefficient of the
terrain d:

2200[ sec/mN ⋅ ]

Gain 1K ( )0,30000,7000,300diag
Gain 2K ( )00,500,50,5diag
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Fig.7  Stick diagram of the biped robot

Fig.7 shows that the biped robot can walk on flexible terrain.
Although it is shown that the support leg sank into the terrain,
it did not disturb the walk of the biped robot.
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Fig.8  Orbital energy in walking

Fig.8 shows the orbital energy. The solid line shows the
energy with ε , and the dashed line shows the energy without
ε . From Fig.8, it is shown that the orbital energy converged
to the desired value ]J[5.0=dE by the proposed method.
In the interval 0-4[sec], since the value of ( )nα varies, the
orbital energy did not converge. After 4[sec], the law of
adjustment of orbital energy was effective. Impulsive spikes of
orbital energy are shown at every leg switching point since big
impulsive forces occurred when the swing leg of the biped
robot lands on the terrain.
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Fig.9 shows the value of ε . After 4[sec] ε converged to a
constant value, about 0.97. It means that the swing leg landed
on slightly nearer side than the original landing point.

5.Conlcusion
In this paper, we extended a walking algorithm based on
LIPM in order that the biped robot can walk on the flexible
terrain. In process of extending it, we also proposed a way that
makes the orbital energy converge to the desired value in
prospect of landing time disagreement. And the effectiveness
of the proposed method is also shown in simulation.
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Appendix
 The derivation of (3.28) is showed here. The biped robot
system is defined in Fig10. Let 2dθ denote the desired value
of 2θ when the height of COM of biped robot corresponds to
the desired height. Let y axis directional displacement of the
tip of the support leg be 0y . Then, the desired height of COM
of biped robot hdL is given as
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Transporting the terms that don’t include 2dθ  to left hand side
in (A.1), the following equation is given.
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Denote the left hand side of (A.2) asν . The right hand side of
(A.2) shows displacement in y axis of the biped robot from the
point M . Next, let M point be a pivot, and consider the part
that consists of link2, link3 and link4 are rotated 2dθ  in
clockwise direction and let M  be origin. The COM of the
biped robot is defined γµ     and     as follow.
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Fig.10 shows the above geometric relation.
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Fig.10:Geometric relation of before and after rotation

2d

Dashed circles in Fig.10 and Fig.11 denote the position of
COM of the biped robot. In order to get 2dθ , Let

( )γµφ ,2ATAN=                                (A.5)
Since the distance from point M  to COM does not change by
rotation 2dθ . Therefore, the following is given from geometric
relation.
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From (A.6),
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Fig.11:Details of geometric relation (Fig.10)
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