• Title/Summary/Keyword: Flexible arm

Search Result 150, Processing Time 0.021 seconds

Dynamic modeling and simulation of flexible robotic arms (유연한 로보트 팔의 동적 모델링과 시뮬레이션)

  • 김형옥;박세승;이정기;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.248-253
    • /
    • 1992
  • In the development of a high speed and light weight manipulator, it is necessary to consider the structural elasticity of a robotic arm. The analysis of the infinite mode dynamic of robotic arm must be performed to obtain the finite mode modelling to achieve the feasible controller design of the robotic arm. The modelling procedure of the robotic arm is also illustrated. The controlled mode of the modelled dynamic can be derived by truncating the higher vibrational mode to result in the low order system for the sampling in the control signal is confined to the higher mode. And it is controlled by the pole assignment which can compensate the unmodelled dynamic effects. The unmodelled dynamic can result in the instability of the controlled system, which is known as spillover. The controller design of the low order system is simulated by the pole assignment and optimal control theory.

  • PDF

Study of Design Characteristics of Flexible Manufacturing System for Practical Training (실습 자동화 생산 시스템 설계특성에 대한 연구)

  • Jo, Jang-Hyen
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.93-98
    • /
    • 2005
  • The purposes of this paper are the review and derivation of design characteristics for the new construction of the practical flexible manufacturing system. The basic ideas to analyze the manufacturing system which is the automatically operated are dependant on the various manufacturing procedures in factory. The practical flexible manufacturing systems have various mechanical subsystems appropriated fur the final manufacturing products. Therefore the systems have the various kinds of hardwares as well as softwares. We study the software for the practical flexible manufacturing system designed and developed in the Halla University with the related company. Specially the design concepts and using specifications of all subsystems which are composed of mechanical and electronic movements of the product are analyzed and introduced in this dissertation.

Inverse Dynamic Analysis of A Flexible Robot Arm with Multiple Joints by Using the Optimal Control Method (최적 제어기법을 이용한 다관절 유연 로보트팔의 역동역학 해석)

  • Kim, C.B.;Lee, S.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.133-140
    • /
    • 1993
  • In this paper, we prpose a method for tracking optimally a spatial trajectory of the end-effector of flexible robot arms with multiple joints. The proposed method finds joint trajectories and joint torques necessary to produce the desired end-effector motion of flexible manipulator. In inverse kinematics, optimized joint trajectories are computed from elastic equations. In inverse dynamics, joint torques are obtained from the joint euqations by using the optimized joint trajectories. The equations of motion using finite element method and virtual work principle are employed. Optimal control is applied to optimize joint trajectories which are computed in inverse kinematics. The simulation result of a flexible planar manipulator is presented.

  • PDF

Development of a Measurement System of Torsional and Conical Suspension Bushing Rates with the Flexible Jig (유연 지그를 이용한 서스펜션 부싱의 비틀림 및 원추 강성 측정기 개발)

  • 이재곤;박용국;김기대
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.121-127
    • /
    • 2003
  • The stiffness of a bushing in a suspension is extremely important for the overall performance of the suspension system. A new measurement system including the flexible jig was developed to measure the multi-directional stiffness of bushings. To overcome the disadvantage of building each individual jig for each type and size of a bushing, we designed the flexible jig which can accommodate numerous bushings of similar shapes and sizes. Upon using the novel design of the flexible jig in the industry, we could successfully measure the torsional and conical stiffness of many bushings and apply the data for the prediction and evaluation of the performance of a suspension system, which would assist designing the optimal suspension system.

Vibration Control of a Very Flexible Robot Arm-via Piezoactuators (압전 작동기를 이용한 매우 유연한 로봇 팔의 진동 제어)

  • 신호철;최승복
    • Journal of KSNVE
    • /
    • v.6 no.2
    • /
    • pp.187-196
    • /
    • 1996
  • A new control strategy to actively control the vibration of a very flexible single link manipulator is proposed and experimentally realized. The control scheme consists of two actuators; a motor mounted at the beam hub and a piezoceramic bonded to the surface of the flexible link. The control torque of the motor to produce a desired angular motion is firstly determined by employing a sliding mode control theory on the equivalent rigid dynamics. The torque is then applied to the flexible manipulator in order to activate the commanded motion. During the motion, underirable oscillation is actively suppressed by applying a feedback control voltage to the piezoceramic actuator. Consequently, the desired tip position is favorably accomplished without vibration. Measured control responses are presented in order to demonstrate the efficiency of the proposed control methodology.

  • PDF

Design of Robot Arm Controller based on Motion Capture (동작 모방형 로봇팔의 제어기 설계)

  • Ha, Chang-Wan;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.535-536
    • /
    • 2011
  • 본 논문에서는 컨트롤러를 부착한 사람의 팔 움직임을 따라 하는 Robot Arm에 대해 기술한다. 구부러짐에 따라 저항값이 다르게 나오는 flexible sensor를 관절마다 부착하여 사람의 팔의 움직임에 따라 만들어진 Data를 Analog Digital Converting과 Digital Filtering을 거쳐 데이터를 안정화 있게 로봇팔로 전송 하도록 설계하였다.

  • PDF

Design of the Controller with Sliding Mode for Robot Arm (슬라이딩모드를 갖는 로봇 팔의 제어기 설계)

  • 서원창;임규만;정영창
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.703-706
    • /
    • 1999
  • In this paper, robust vibration control of a one-link flexible robot arm based on variable structure system is discussed. We derive dynamic equations of it using a Lagragian assumed modes method based on Bernoulli-Euler beam theory. The optimal sliding surface is designed and the problem of chattering is also solved by the adoptation of a continuous control law within a small neighborhood of the switching hyperplane.

  • PDF

Formulation of the equation of motion for flexible robotics arms by using the finite element and modal reduction method (유한요소및 모달감소법을 이용한 유연로보트팔 운동방정식의 정식화)

  • 김창부;유영선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.533-538
    • /
    • 1991
  • In the design and operation of robot arms with flexible links, the equations of motion are required to exactly model the interaction between rigid motion and elastic motion and to be formulated efficiently. Thus, the flexible link is represented on the basis of the D-H rigid link representation to measure the elastic deformation. The equations of motion of robot arms, which are configured by the generalized coordinates of elastic and rigid degrees of freedom, are formulated by using F.E.M. to model complex shaped links systematically and by eliminating elastic mode of higher order that does not largely affect motion to reduce the number of elastic degree of freedom. Finally, presented is the result of simulation to flexible robotic arm whose joints are controlled by direct or PD control,

  • PDF

Dynamic Modeling of Two Cooperating Flexible Manipulators

  • Kim, Jin-Soo;Uchiyama, Masaru
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.188-196
    • /
    • 2000
  • In this paper, our aim is to develop a model for two cooperating flexible manipulators handling a rigid object by using lumped parameters. This model is in turn analyzed on MATLAB. In order to validate the model, a precise simulation model is developed using $ADAMS^{TM}$ (Automatic Dynamic Analysis of Mechanical System). Moreover, to clarify the discussion, the motions of a dual-arm experimental flexible manipulator are considered. Using the developed model, we control a robotic system with a symmetric hybrid position/force control scheme. Finally, experiments and simulations are performed, and a comparison of simulation results with experimental results is given to a rerify the validity of our model.

  • PDF

Optimal control of a flexible robot arm using singular perturbation model (유연 링크 로봇의 특이섭동모델 최적제어)

  • Han, Ki-Bong;Lee, Shi-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.1
    • /
    • pp.62-68
    • /
    • 1996
  • Linear controllers, such as LQG/LTR controller, have been investigated to control flexible link manipulators. The performance and complexity of these depend largely on the linearized model upon which the controller is designed. In this study, singular perturbation model is tested in designing a LQG/LTR controller for a flexible link manipulator. The order of the resulting controller is much lower than the one based on a full model. Through numerical study, it is shown that the performance of the proposed controller reaches reasonably to the one based on the full model.

  • PDF