• Title/Summary/Keyword: Flexible analysis

Search Result 2,431, Processing Time 0.031 seconds

Dynamic Analysis of a Helicopter Landing Gear with Considering Flexible Structural Modes (동체의 유연성을 고려한 헬기 착륙장치의 동특성 해석 연구)

  • Hyun, Young-O;Bae, Jae-Seoung;Kim, Young-Seok;Hwang, Jae-Up;Lim, Kyoung-Ho;Kim, Doo-Man;Kim, Tae-Wook;Hwang, Jai-Hyuk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.4
    • /
    • pp.33-37
    • /
    • 2007
  • In this paper, a dynamic analysis of a helicopter landing gear with considering flexible structural modes has been investigated. The main body of the helicopter has been modeled as a flexible body using FEM code, then a few selected vibration modes of the helicopter main body have been used as basis for the dynamic analysis of the helicopter landing gear. The simulation of dynamic analysis was carried out on the base of ADAMS aircraft module. It has been found by a series of simulation that the flexible structural modes has a significant effect on the dynamic characteristics of helicopter landing gear as the flexibility of the main body is increased.

  • PDF

DADS 및 MSC/NASTRAN을 이용한 다물체계 유연물체의 동역학 해석

  • Kim, Chang-Bu;Baek, Yun-Gi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.63-71
    • /
    • 2001
  • This paper introduces a method for calculation of dynamic stress occurring in flexible bodies of a moving multibody system by using commercial softwares DADS for dynamic analysis and MSC/NASTRAN for finite element analysis. Three methods for model transient response analysis of a flexible body are summarized. Elastic deformation of a flexible body can be described with normal modes and static modes composed of constraint modes and residual attachment modes. The deformation modes divided into fixed-interface modes and free-interface modes can be determined by using MSC/NASTRAN and selected for dynamic analysis. The dynamic results obtained from DADS are utilized to calculate dynamic stress by using mode-displacement method or mode-acceleration method of MSC/NASTRAN. As a numerical example of the analysis, we used a three dimensional slider-crank model with a flexible connecting rod.

  • PDF

Selecting Main Parts of a Four-Axis Palletizing Robot Through Dynamic Analysis of Rigid-Flexible Multibody Systems (유연 다물체 동역학 해석을 이용한 4축 이적재 로봇의 주요 부품 선정)

  • Park, Il-Hwan;Go, A-Ra;Seol, Sang-Seok;Hong, Dae-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.54-63
    • /
    • 2022
  • Among the various industrial robots, palletizing robots have received particular attention because of their higher productivity in accordance with technological progress. When designing a palletizing robot, the main components, such as the servo motors and reducers, should be properly selected to ensure its performance. In this study, a practical method for selecting the motors and reducers of a robot was proposed by performing the dynamic analysis of rigid-flexible multibody systems using ANSYS and ADAMS. In the first step, the links and frames were selected based on the structural analysis results obtained from ANSYS. Subsequently, a modal neutral file (MNF) with information on the flexible body was generated from the links and frames using modal analysis through ANSYS and APDL commands. Through a dynamic analysis of the flexible bodies, the specifications of the major components were finally determined by considering the required torque and power. To verify the effectiveness of the proposed method, the analysis results were compared with those of a rigid-body model. The comparison showed that rigid-flexible multibody dynamic analysis is much more useful than rigid body analysis, particularly for movements heavily influenced by gravity.

A Study on the Design of Flexible Display Considering the Failure Characteristics of ITO Layer (플렉시블 디스플레이에서 ITO층의 파괴 특성을 고려한 설계연구)

  • Kim, Min Gyu;Park, Sang Baek;Chae, Soo-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.5
    • /
    • pp.552-558
    • /
    • 2013
  • In recent years the interest on flexible display has been increasing as a future display due to its bendable characteristics. An ITO(indium tin oxide) layer, which is part of a flexible display, can be broken easily while bending because it is made of brittle materials. This brittle property can cause the malfunction of flexible display. To analyze fracture characteristics of ITO layer, bending test was conducted commonly. However, it is not possible to know specific phenomena on bended ITO layer by simple bending test only. Accordingly, in this study, the FE(finite element) model is developed similarly to a real flexible display to analyze stress distribution of flexible display under bending condition, especially on ITO layer. To validate FE model, actual bending test was conducted and the test results were compared with the simulation results by measuring reaction forces during bending. By using the developed model, FE analysis about the effect of design parameter (Thickness & Young's Modulus of BL) on ITO Layer was performed. By explained FE analysis above, this research draws a conclusion of reliable design guide of flexible display, especially on ITO layer.

Strength and Stiffness Analysis for a Flexible Gripper with Parallel Pinching and Compliant Grasping Capabilities (순응형 파지와 정밀한 집기가 가능한 유연한 그리퍼의 강도 및 강성 분석)

  • Lee, Deok Won;Jeon, Hyeong Seok;Jeong, Young Jun;Kim, Yong Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.817-825
    • /
    • 2016
  • In this paper, we introduce a flexible gripper that we have engineered to precisely pinch in parallel and compliantly grasp objects. As found in most conventional industrial grippers, the parallel pinching property is essential for precise manipulation. On the other hand, the grippers with a flexible structure are more adept at grasping objects with arbitrary shapes and softness. To achieve these disparate properties, we introduce a flexible gripper mechanism composed of multiple flexible beam structures. Utilizing these beam structures, the proposed gripper is able to grasp arbitrarily shaped objects. Additionally, a unique combination of flexible beams enables the gripper to pinch objects using the parallel fingertips for enhanced precision. A detailed description of the proposed mechanism is provided, and an analysis of the strength and stiffness of the fingertip and finger body is presented. The Results section compares the theoretical and experimental analyses and verifies the properties and performance of the proposed gripper.

Challenges and suggestions in dealing with flexible space in predicting space utilization

  • Chen, Xingbin;Kim, Tae Wan
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.299-303
    • /
    • 2015
  • Flexible space is an adaptable space that has been increasingly used in many office and academic buildings as it increases the use of the space available and reduces the unnecessary building area. However, the architectural, engineering and construction (AEC) industry lacks a formalized method that helps architects predict and update the space utilization of flexible space during the project development, as such prediction aims to maximize the use of the building space available without exceeding the target utilization policy. Consequently, current manual utilization prediction results in lower accuracy level and limits the maximized use of the flexible space, which has multiple space-use types that affect the prediction of utilization. To address this problem, we identified eight space-use type differentiators (SUTDs) based on the literature review and observations and discussed the use of them in automated space-use analysis (SUA), which can predict the utilization of flexible space via a computer program. This research builds on SUA and contributes to flexible space planning by providing a means of a more comprehensive and accurate SUA.

  • PDF

A Basic Study on the Design of the Flexible Keel in the Energy-Storage Prosthetic Foot for the Improvement of the Walking Performance of the Below Knee Amputees (하지 절단환자의 보행 능력 향상을 위한 에너지 저장형 의족의 유연 용골 설계를 위한 기초연구)

  • 장태성;이정주;윤용산;임정옥
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.519-530
    • /
    • 1998
  • In this paper, the basic study on the design of the flexible keel of the energy-storage prosthetic foot was performed in order to Improve the walking performance and Increase the activities of the below knee amputees. Based on the analysis of the anthropometric data and the normal gait on two dimensional sagittal plane available In the literature, we presented a model of the basic structure of the flexible keel of the prosthetic foot. The model of the basic structure was composed of the simple beams, and linear rotational spring and damper. Laminated carbon fiber-reinforced composites were selected as the material of the basic structure model of the flexible keel In order to apply the high strength and light weight materials to the basic structure of the flexible keel of the prosthetic foot. The recoverable strain energy In response to the change of beam shape was calculated bur the finite element analysis and it was suggested that the change of beam shape could be the design variable in flexible keel design. The simulation process was systematically designed by using orthogonal array table in order to design the flexible keel structure which could store the more recoverable strain energy. finite element analysis was carried but according to the design of simulations by using the finite element program ABAQUS and the flexible keel structure of the energy-storage prosthetic foot was obtained from the analysis of variance(ANOVA). The dynamic simulation model of the prosthetic walking using the flexible keel structure was made and the dynamic analysis was carried but during one walk cycle. Based on the above results, an effective design process was presented for the development of the prosthetic fool system.

  • PDF

Analysis of Behavior for Underground Flexible Pipes Under Seismic Loads (지진발생에 따른 지중연성관의 거동특성 분석)

  • 김경열;홍성연;이대수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.709-716
    • /
    • 2003
  • Flexible pipes (corrugated polyethylene pipes) are normally used for underground power distribution grids. In this paper, dynamic analysis was carried out through FEM in order to investigate the structural behaviour of pipes subjected to seismic loads. The burial depth and the number of pipes were major parameters in the numerical analysis to determine the response of pipes. The results show that the displacement of pipes under given conditions are all satisfactory in comparison of the allowable strain criteria -maximum 3.5 %.

  • PDF

Tendency Analysis of Shape Error According to Forming Parameter in Flexible Stretch Forming Process Using Finite Element Method (유한요소법을 이용한 가변스트레치공정 성형변수에 따른 성형오차 경향분석)

  • Seo, Y.H.;Heo, S.C.;Song, W.J.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.486-493
    • /
    • 2010
  • A shape error of the sheet metal product made by a flexible stretch forming process is occurred by a various forming parameters. A die used in the flexible stretch forming is composed of a punch array to obtain the various objective surfaces using only one die. But gaps between the punches induce the shape error and the defect such as a scratch. Forming parameters of the punch size and the elastic pad to prevent the surface defect must be considered in the flexible die design process. In this study, tendency analysis of shape error according to the forming parameters in the flexible stretch process is conducted using a finite element method. Three forming parameters, which are the punch size, the objective curvature radius and the elastic pad thickness, are considered. Finite element modeling using the punch height calculation algorithm and the evaluation method of the shape error, which is a representative value for the formability of formed surface, are proposed. Consequently, the shape error is in proportion to the punch size and is out of proportion to the objective curvature radius and the elastic pad thickness.

Effect of Interface Conditions on Flexible Pavement Fatigue Cracking Using 3D Finite Element Analysis (3차원 유한요소해석을 통한 연성포장의 층간접촉특성이 피로균열에 미치는 영향 평가)

  • Jo, Myoung-Hwan;Kim, Nak-Seok
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.109-112
    • /
    • 2007
  • To determine design or remaining life of flexible pavement, tensile strain at the bottom of asphalt concrete course and vertical strain on top of subgrade should be estimated. Various computer programs can be used for determining the strain at the critical position in pavement. However, these are conducted under the assumptions of full bonded or unbound state of layer interface conditions. This study compares the output of finite element analysis and multi-layer elastic analysis as vertical load was applied to the surface of flexible pavement. It is noted that the pavement performance is significantly affected depending upon the interface conditions.

  • PDF