• 제목/요약/키워드: Flexible Frequency Operation

검색결과 43건 처리시간 0.026초

주파수 유연화 운영에 따른 발전기 축 비틀림에 관한 연구 (A Study on the Subsynchronous Resonance by Flexible Frequency Operation)

  • 조윤성
    • 조명전기설비학회논문지
    • /
    • 제29권4호
    • /
    • pp.62-68
    • /
    • 2015
  • Subsynchronous Resonance is a condition where the electrical power systems composed of generator and transmission line exchange energy with mechanical turbine-generator system at the frequency of the combined below the subsynchronous frequency. Therefore, the frequency of power systems should be associated with the subsynchronous resonance. This paper describes subsynchronous resonance by flexible frequency operation. It focuses on the characteristics and behavior of subsynchronous resonance. The subsynchronous resonance is being conducted by real-time digital simulator and the IEEE benchmark model for subsynchronous resonance have been utilized for the test systems.

Transferrable single-crystal silicon nanomembranes and their application to flexible microwave systems

  • Seo, Jung-Hun;Yuan, Hao-Chih;Sun, Lei;Zhou, Weidong;Ma, Zhenqiang
    • Journal of Information Display
    • /
    • 제12권2호
    • /
    • pp.109-113
    • /
    • 2011
  • This paper summarizes the recent fabrication and characterizations of flexible high-speed radio frequency (RF) transistors, PIN-diode single-pole single-throw switches, as well as flexible inductors and capacitors, based on single-crystalline Si nanomembranes transferred on polyethylene terephthalate substrates. Flexible thin-film transistors (TFTs) on plastic substrates have reached RF operation speed with a record cut-off/maximum oscillation frequency ($f_T/f_{max}$) values of 3.8/12 GHz. PIN diode switches exhibit excellent ON/OFF behaviors at high RF frequencies. Flexible inductors and capacitors compatible with high-speed TFT fabrication show resonance frequencies ($f_{res}$) up to 9.1 and 13.5 GHz, respectively. Robust mechanical characteristics were also demonstrated with these high-frequency passives components.

A Flexible and Tunable Microwave Photonic Filter Based on Adjustable Optical Frequency Comb Source

  • Tran, Thanh Tuan;Seo, Dongsun
    • 전기전자학회논문지
    • /
    • 제19권1호
    • /
    • pp.27-32
    • /
    • 2015
  • A flexible and tunable microwave photonic filter based on adjustable optical frequency comb source is demonstrated. We use a combination of a dual parallel Mach Zehnder modulator and an intensity modulator to generate fifteen comb lines with proper weights to implement a desired filter. The optical comb weights, corresponding to the tap coefficients of the filter, are flexibly changed by adjusting the operation parameters of the modulators. The achieved bandwidth and stopband attenuation of the tunable filter are 0.7 GHz and 20 dB, respectively. In addition, we overcome the undesired low frequency suppression appeared in a conventional scheme by applying a dual parallel Mach Zehnder modulator for single sideband suppressed carrier modulation.

유연한 arm의 1축 회전 기동을 위한 강인성 제어기 설계 (Robust controller design for the rotational maneuver of a flexible arm)

  • 방효충;박영웅;남문경;황보한
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1322-1325
    • /
    • 1997
  • A new feedback control law design techniqed usign of-off thrusters for the rotational maneuver of a flexible arm is discussed in this study. a two state on-off thruster actuator is taken as a primary actuation device for theis study. The on-off thruster operation is emulated in conjunction with the conventioal minimum-time trackig control law. The actuator input region is divided into two separate parts ; one is constant input and the other is time varying tegion. the new control law has potential applicatioin for the relatively low frequency structure such as large flexible space structure being currently used in various space echnology areas.

  • PDF

High Performance Flexible Inorganic Electronic Systems

  • 박귀일;이건재
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.115-116
    • /
    • 2012
  • The demand for flexible electronic systems such as wearable computers, E-paper, and flexible displays has increased due to their advantages of excellent portability, conformal contact with curved surfaces, light weight, and human friendly interfaces over present rigid electronic systems. This seminar introduces three recent progresses that can extend the application of high performance flexible inorganic electronics. The first part of this seminar will introduce a RRAM with a one transistor-one memristor (1T-1M) arrays on flexible substrates. Flexible memory is an essential part of electronics for data processing, storage, and radio frequency (RF) communication and thus a key element to realize such flexible electronic systems. Although several emerging memory technologies, including resistive switching memory, have been proposed, the cell-to-cell interference issue has to be overcome for flexible and high performance nonvolatile memory applications. The cell-to-cell interference between neighbouring memory cells occurs due to leakage current paths through adjacent low resistance state cells and induces not only unnecessary power consumption but also a misreading problem, a fatal obstacle in memory operation. To fabricate a fully functional flexible memory and prevent these unwanted effects, we integrated high performance flexible single crystal silicon transistors with an amorphous titanium oxide (a-TiO2) based memristor to control the logic state of memory. The $8{\times}8$ NOR type 1T-1M RRAM demonstrated the first random access memory operation on flexible substrates by controlling each memory unit cell independently. The second part of the seminar will discuss the flexible GaN LED on LCP substrates for implantable biosensor. Inorganic III-V light emitting diodes (LEDs) have superior characteristics, such as long-term stability, high efficiency, and strong brightness compared to conventional incandescent lamps and OLED. However, due to the brittle property of bulk inorganic semiconductor materials, III-V LED limits its applications in the field of high performance flexible electronics. This seminar introduces the first flexible and implantable GaN LED on plastic substrates that is transferred from bulk GaN on Si substrates. The superb properties of the flexible GaN thin film in terms of its wide band gap and high efficiency enable the dramatic extension of not only consumer electronic applications but also the biosensing scale. The flexible white LEDs are demonstrated for the feasibility of using a white light source for future flexible BLU devices. Finally a water-resist and a biocompatible PTFE-coated flexible LED biosensor can detect PSA at a detection limit of 1 ng/mL. These results show that the nitride-based flexible LED can be used as the future flexible display technology and a type of implantable LED biosensor for a therapy tool. The final part of this seminar will introduce a highly efficient and printable BaTiO3 thin film nanogenerator on plastic substrates. Energy harvesting technologies converting external biomechanical energy sources (such as heart beat, blood flow, muscle stretching and animal movements) into electrical energy is recently a highly demanding issue in the materials science community. Herein, we describe procedure suitable for generating and printing a lead-free microstructured BaTiO3 thin film nanogenerator on plastic substrates to overcome limitations appeared in conventional flexible ferroelectric devices. Flexible BaTiO3 thin film nanogenerator was fabricated and the piezoelectric properties and mechanically stability of ferroelectric devices were characterized. From the results, we demonstrate the highly efficient and stable performance of BaTiO3 thin film nanogenerator.

  • PDF

플렉시블 디스플레이와 집적회로에의 OTFT 응용 (OTFT Application to Flexible Displays and Integrated Circuits)

  • 김강대;허영헌;이명원;류기성;송정근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.441-445
    • /
    • 2007
  • In this paper we demonstrated the applications of OTFTs (organic thin film transistors) to flexible displays such as AM-EPD (active matrix electrophoretic display) and AM-OLED (active matrix organic light emitting diode), and also to integrated circuits. The OTFTs using pentacene semiconductor layer and PVP gate dielectric and Au S/D electrodes exhibited good performance for AM-EPD with the mobility of $0.59\;cm^{2}/V.sec,$ and with also good uniformity over 2.5" diagonal area. However, it is nor enough for AM-OLED requiring the mobility larger than $1\;cm^{2}/V.sec$ for large area displays. The integrated circuits also worked, producing the operating frequency of 1MHz. We need to develop a fabrication process to reduce parasitic capacitance for high frequency operation.

  • PDF

A Reset-Free Anti-Harmonic Programmable MDLL-Based Frequency Multiplier

  • Park, Geontae;Kim, Hyungtak;Kim, Jongsun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권5호
    • /
    • pp.459-464
    • /
    • 2013
  • A reset-free anti-harmonic programmable multiplying delay-locked loop (MDLL) that provides flexible integer clock multiplication for high performance clocking applications is presented. The proposed MDLL removes harmonic locking problems by utilizing a simple harmonic lock detector and control logic, which allows this MDLL to change the input clock frequency and multiplication factor during operation without the use of start-up circuitry and external reset. A programmable voltage controlled delay line (VCDL) is utilized to achieve a wide operating frequency range from 80 MHz to 1.2 GHz with a multiplication factor of 4, 5, 8, 10, 16 and 20. This MDLL achieves a measured peak-to-peak jitter of 20 ps at 1.2 GHz.

THE SUBMILLIMETER ARRAY: CURRENT STATUS AND FUTURE PLAN

  • OHASHI NAGAYOSHI
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.103-106
    • /
    • 2005
  • The Submillimeter Array (SMA), a collaborative project of the Smithsonian Astrophysical Observatory (SAO) and the Academia Sinica Institute of Astronomy & Astrophysics (ASIAA), has begun operation on Mauna Kea in Hawaii. A total of eight 6-m radio telescopes comprise the array with currently working receiver bands at 230, 345, and 690 GHz. The array will have 8 receiver bands covering the frequency range of 180-900 GHz. The backend is flexible analog-digital correlator with a full bandwidth of 2GHz, which is very powerful to cover several line emissions simultaneously. The current status and future plans of the SMA are described with emphasis on Taiwanese efforts.

Design of a Module for Oscillation Detection in an Integrated PCS and W-CDMA Receiver

  • Park Joung-Geun;Lee Jong-Chul
    • 한국ITS학회 논문지
    • /
    • 제4권1호
    • /
    • pp.73-79
    • /
    • 2005
  • In this paper, a circuit for detecting a fine oscillation in an integrated PCS and W-CDMA receiver is presented. The advantages for this design are small size and flexible compatibility for system operation compared with the conventional method. The fine oscillation level can be detected by dB unit through selecting the receiver mode as PCS of 1.8 GHz range or W CDMA of 1.9 GHz range by a RF switch and monitoring the corresponding frequency band. Also, the circuit is designed to be flexible for other communication systems with the consideration of the required dynamic range of 75 dB.

  • PDF

Flexible Plasma Sheets

  • Cho, Guangsup;Kim, Yunjung
    • Applied Science and Convergence Technology
    • /
    • 제27권2호
    • /
    • pp.23-25
    • /
    • 2018
  • With respect to the electrode structure and the discharge characteristics, the atmospheric pressure plasma sheet of a thin polyimide film is introduced in this study; here, the flexible plasma device of a dielectric-barrier discharge with the ground electrode and the high-voltage electrode formulated on each surface of a polyimide film whose thickness is approximately $100{\mu}m$, that is operated with a sinusoidal voltage at a frequency of 25 kHz and a low voltage from 1 kV to 2 kV is used. The streamer discharge is appeared along the cross-sectional boundary line between two electrodes at the ignition stage, and the plasma is diffused on the dielectric-layer surface over the high-voltage electrode. In the development of a plasma sheet with thin dielectric films, the avoidance of the insulation breakdown and the reduction of the leakage current have a direct influence on the low-voltage operation.