• 제목/요약/키워드: Flexibility matrix

검색결과 220건 처리시간 0.025초

모드 유연도 및 정규화된 모드차를 이용한 모드형상 전개 (Use of Modal Flexibility and Normalized Modal Difference(NMD) for Mode Shape Expansion)

  • ;;이상호;김문겸
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.778-785
    • /
    • 2006
  • In this paper, two possible ways for mode shape expansion are proposed and opened for discussion for future use. The first method minimizes the modal flexibility error between the experimental and analytical mode shapes corresponding to the measured DOFs to find the multiplication matrix which can be treated as the least-squares minimization problem. In the second method, Normalized Modal Difference (NMD) is used to calculate multiplication matrix using the analytical DOFs corresponding to measured DOfs. This matrix is then used to expand the measured mode shape to unmeasured DOFs. A simulated simply supported beam is used to demonstrate the performance of the methods. These methods are then compared with two most promising existing methods namely Kidder dynamic expansion and Modal expansion methods. It is observed that the performance of the modal flexibility method is comparable with existing methods. NMD also have the potential to expand the mode shapes though it is seen more sensitive to the distribution of error between FEM and actual test data.

  • PDF

유연도 행렬을 이용한 전단빌딩의 유전자 알고리즘 기반 손상추정 (Damage Detection in Shear Building Based on Genetic Algorithm Using Flexibility Matrix)

  • 나채국;김선필;곽효경
    • 한국전산구조공학회논문집
    • /
    • 제21권1호
    • /
    • pp.1-11
    • /
    • 2008
  • 전단빌딩에 발생한 손상 추정에 있어서 대상 구조물의 물성치를 가정하고 이상화한 모델을 이용한 역해석이 필요하다. 강성행렬을 이용하는 고전적인 손상추정 방법에 비해 유연도 행렬을 이용한 손상추정은 구조물의 저차모드를 이용하기 때문에 비교적 정확한 값을 계산할 수 있기 때문에 더 효과적으로 알려져 있다. 이 논문에서는 손상추정을 위한 알고리즘으로 유전자 알고리즘(Genetic Algorithm, GA)을 도입하였고, 구조 응답에서 취득할 수 있는 유연도 행렬을 이용하여 역해석을 통한 손상추정 기법을 소개하고 있다. 제안된 손상추정 기법은 전단빌딩의 강성에 대한 정확한 정보가 없는 상황에서 전단빌딩의 손상으로 인한 실제 강성변화량을 추정하도록 하였다. 더불어 open source code인 OPENSEES를 이용하여 전단빌딩 수치해석을 통해 제안된 손상추정 기법의 효율성을 검증하였다.

Computation of dynamic stiffness and flexibility for arbitrarily shaped two-dimensional membranes

  • Chen, J.T.;Chung, I.L.
    • Structural Engineering and Mechanics
    • /
    • 제13권4호
    • /
    • pp.437-453
    • /
    • 2002
  • In this paper, dynamic stiffness and flexibility for circular membranes are analytically derived using an efficient mixed-part dual boundary element method (BEM). We employ three approaches, the complex-valued BEM, the real-part and imaginary-part BEM, to determine the dynamic stiffness and flexibility. In the analytical formulation, the continuous system for a circular membrane is transformed into a discrete system with a circulant matrix. Based on the properties of the circulant, the analytical solutions for the dynamic stiffness and flexibility are derived. In deriving the stiffness and flexibility, the spurious resonance is cancelled out. Numerical aspects are discussed and emphasized. The problem of numerical instability due to division by zero is avoided by choosing additional constraints from the information of real and imaginary parts in the dual formulation. For the overdetermined system, the least squares method is considered to determine the dynamic stiffness and flexibility. A general purpose program has been developed to test several examples including circular and square cases.

유연 생산시스템에서의 작업할당/경로선정/부품투입순서의 결정 (A multi-objective Loading/Routeing and Sequencing decision in a Flexible Manufacturing System)

  • 이영광;정병희
    • 대한산업공학회지
    • /
    • 제19권4호
    • /
    • pp.41-48
    • /
    • 1993
  • Prime advantage of flexible manufacturing systems(FMS) is a flexibility. Flexibility is expected to prolong the service life of a manufacturing facility and enable it to respond quickly and economically to dynamic market change. The FMS loading decision is concerned with the allocation of operations and tools to machines subject to technological and capacity constraints of the system. Modern FMS loading problem has the multiple objectives such as processing cost, time and work load balance. We propose multi-objectives which could be used to formulate the loading/routeing problem and sequencing decision which should be adopted for each part type in order to maximize the machine flexibility by Hamming distance matrix based on Incidance matrix. Finally, a numerical example is provided to illustrate the proposed model.

  • PDF

티모센코 보이론을 적용한 크랙을 가진 유체유동 파이프의 동특성에 관한 연구 (A Study on the Dynamic Behavior of Cracked Pipe Conveying Fluid Using Theory of Timoshenko Beam)

  • 진종태;손인수;윤한익
    • 한국소음진동공학회논문집
    • /
    • 제14권3호
    • /
    • pp.236-243
    • /
    • 2004
  • In this paper a dynamic behavior of a simply supported cracked pipe conveying fluid with the moving mass is presented. Based on the Timoshenko beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. And the crack is assumed to be in th first mode of fracture. As the depth of the crack and velocity of fluid are increased the mid-span deflection of the pipe conveying fluid with the moving mass is increased. As depth of the crack is increased, the effect of the velocity of the fluid on the mid-span deflection appears more greatly.

크랙을 가진 단순지지 보의 동특성에 미치는 이동질량의 영향 (Influence of Serial Moving Masses on Dynamic Behavior of Simply Supported Beam with Crack)

  • 윤한익;김영수;손인수
    • 한국소음진동공학회논문집
    • /
    • 제13권7호
    • /
    • pp.555-561
    • /
    • 2003
  • An iterative modal analysis approach is developed to determine the effect of transverse open cracks on the dynamic behavior of simply supported Euler-Bernoulli beams with the moving masses. The influences of the velocities of moving masses, the distance between the moving masses and a crack have been studied on the dynamic behavior of a simply supported beam system by numerical method. The Presence of crack results In large deflection of beam. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. Totally, as the velocity of the moving masses and the distance between the moving masses are increased, the mid-span deflection of simply supported beam with the crack is decreased.

크랙을 가진 단순지지 보의 동특성에 미치는 이동질량의 영향 (Influence of Serial Moving Masses on Dynamic Behavior of a Simply Support Beam with Crack)

  • 손인수;조정래;윤한익
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.1085-1090
    • /
    • 2003
  • An iterative modal analysis approach is developed to determine the effect of transverse open cracks on the dynamic behavior of simply supported Euler-Bernoulli beams with the moving masses. The influences of the velocities of moving masses, the distance between the moving masses and a crack have been studied on the dynamic behavior or a simply supported beam system by numerical method. no presence or crack results in large deflection of beam. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. Totally, as the velocity of the moving masses and the distance between the moving masses are increased, the mid-span deflection of simply supported beam with the crack is decreased.

  • PDF

유한요소법을 이용한 이동질량 하에 크랙을 갖는 티모센코 보의 동특성 연구 (Dynamic Analysis of the Cracked Timoshenko Beam under a Moving Mass using Finite Element Method)

  • 강환준;이시복;홍금식;전승민
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.271-276
    • /
    • 2004
  • In this paper. dynamic behavior of the cracked beam under a moving mass is presented using the finite element method (FEM). Model accuracy is improved with the following consideration: (1) FE model with Timoshenko beam element (2) Additional flexibility matrix due to crack presence (3) Interaction forces between the moving mass and supported beam. The Timoshenko bean model with a two-node finite element is constructed based on Guyan condensation that leads to the results of classical formulations. but in a simple and systematic manner. The cracked section is represented by local flexibility matrix connecting two unchanged beam segments and the crack as modeled a massless rotational spring. The inertia force due to the moving mass is also involved with gravity force equivalent to a moving load. The numerical tests for various mass levels. crack sizes. locations and boundary conditions were performed.

  • PDF

Optimized finite element model updating method for damage detection using limited sensor information

  • Cheng, L.;Xie, H.C.;Spencer, B.F. Jr.;Giles, R.K.
    • Smart Structures and Systems
    • /
    • 제5권6호
    • /
    • pp.681-697
    • /
    • 2009
  • Limited, noisy data in vibration testing is a hindrance to the development of structural damage detection. This paper presents a method for optimizing sensor placement and performing damage detection using finite element model updating. Sensitivity analysis of the modal flexibility matrix determines the optimal sensor locations for collecting information on structural damage. The optimal sensor locations require the instrumentation of only a limited number of degrees of freedom. Using noisy modal data from only these limited sensor locations, a method based on model updating and changes in the flexibility matrix successfully determines the location and severity of the imposed damage in numerical simulations. In addition, a steel cantilever beam experiment performed in the laboratory that considered the effects of model error and noise tested the validity of the method. The results show that the proposed approach effectively and robustly detects structural damage using limited, optimal sensor information.

이중크랙을 가진 외팔 파이프의 동특성에 미치는 끝단질량과 이동질량의 영향 (Influence of Tip Mass and Moving Mass on Dynamic Behavior of Cantilever Pope with Double-crack)

  • 손인수;윤한익
    • 한국소음진동공학회논문집
    • /
    • 제15권4호
    • /
    • pp.483-491
    • /
    • 2005
  • In this paper a dynamic behavior of a double-cracked cantilever pipe with the tip mass and a moving mass is presented. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by using Lagrange's equation. The influences of the moving mass, the tip mass and double cracks have been studied on the dynamic behavior of a cantilever pipe system by numerical method. The cracks section are represented by the local flexibility matrix connecting two undamaged beam segments. Therefore, the cracks are modelled as a rotational spring. This matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. We investigated about the effect of the two cracks and a tip mass on the dynamic behavior of a cantilever pipe with a moving mass.