• Title/Summary/Keyword: Flat specimen

Search Result 157, Processing Time 0.023 seconds

A Study on Material Characterization and Mechanical Properties of SMC Compression Molding Parts (SMC 압축성형재의 기계적 물성 및 특성에 관한 연구)

  • 김기택;임용택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2396-2403
    • /
    • 1994
  • An experimental study on material characterization and mechanical properties of SMC(Sheet Molding Compounds) compression method parts was carried out. Simple compression test using grease oil as a lubricant was carried out to characterize flow stress of SMC at elevated temperatures. Two different mold temperatures, $130^{\circ}C{\;}and{\;}150^{\circ}C$ and two different mold speeds, 15, 45 mm/min were used for preparing the specimen of SMC compression molded parts. Surface roughness, tensile, and 3-point bending tests were used to determine the effects of molding temperatures and speeds on mechanical properties of compression molded SMC parts. Orientation and distribution of glass fiber in the compression molded SMC parts were also investigated by photographing the burnt flat specimen and taking SEM(Scanning Electron Microscope) of cross-sectional T-specimen.

A method of determining flow stress and friction factor using an inverse analaysis in ring compression test (링압축시험에서 역해석을 이용한 유동응력과 마찰상수 결정법)

  • Choi, Y.;Kim, H.K.;Cho, H.Y.;Kim, B.M.;Choi, J.C.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.483-492
    • /
    • 1998
  • An inverse analysis been applied to obtain the flow stress of the material. In this method, a ring-shaped specimen is compressed between two flat tools. This procedure employs, as the object function of inverse analysis, the balance of measured loads and reaction forces calculated by using rigid-plastic finite element method. The balance is explicit scalar function of flow stress which is a function of some unknown constants. For minimizing the balance, Newton-Raphon scheme is used. The friction factor, m, between flat tools and the specimen is determined by using friction area-divided method. The proposed method allows an accurate identification by avoiding the usual assumptions made in order to convert experimental measures into stress-strain relation. In this paper, the proposed method is numerically tested. A commercial pure aluminum was selected, as an example, to apply the method and the results are compared with stress-strain relation obtained by experiments.

Development of Test Method for Flat Panel Display Life Time Prediction during Atmospheric Particle Exposure (평판디스플레이의 대기중 분진농도에 따른 수명예측 시험방법 개발)

  • Yoo, Dong-Hyun;Lee, Gun-Ho;Choi, Jung-Uk;Ahn, Kang-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.4
    • /
    • pp.45-48
    • /
    • 2013
  • The electronic device, such as flat panel display (FPD), is very important in our life as a means of communication between humans. Liquid crystal display (LCD), which is categorized as a flat panel display, has been used in many display products, especially in TV industry. An LED TV is composed of several electrical components, such as liquid critical module (LCM), analog to digital convertor (AD), power supplier, and inverter board. These modules are very vulnerable to particulate contamination, and causing malfunction or visibility degradation. In this study, we developed a test method for prediction of LCM's lifetime. The test system consists of carbon particle generation flame, dilution system, test chamber, and particle concentration monitoring instrument. Since the carbon particles are the most abundant in the atmosphere and easily absorb light, soot particles are used as a challenging material for this test. The concentration of generated soot particles is set around 4,000,000 #/cc, which is 400 times higher than that of usual atmospheric particles. Through this experiment, we deduced the relationship between the dust concentration and life time of the test specimen.

Characteristics of High Frequency Ultrasonic Transducer Employing Polyvinylidene Fluoride and Detectability of Flaw in Cr-Ni Steel (PVDF 수침용 고주파수 초음파 탐촉자의 검출장과 Cr-Ni 강에서의 결함 검출능 측정)

  • Kim, Byoung-Geuk;Lee, S.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.1
    • /
    • pp.23-30
    • /
    • 1997
  • Recently high frequency ultrasonic transducers to employ polyvinylidene fluoride(PVDF) or polyvinylidene fluoride trifluoroethylene P(VDF-TrFE) have been used to detect small flaws in immersion testing. The detection field depending on the water path between the transducer and a specimen and the path in a tested specimen was measured using a PVDF transducer with nominal frequency 80MHz. Also, C-scan and B-scan were performed for the specimens made of Cr-Ni steel with the artificial flaws, the flat-bottom holes with diameter ranging from $50{\mu}m$ to $560{\mu}m$ at 12mm depth. As the result, the flaws with diameter larger than $280{\mu}m$ were detected, but the flaws with the ratio of diameter to wavelength smaller than about 0.48 were not detected. That the smaller flaws could not be detected was attributed to the attenuation of high frequency components in the steel specimens.

  • PDF

A Study on the Angle of Localization of a Metal Specimen under Uniaxial Tension with Plane Strain Condition (평면 변형 조건에서 일축 인장력을 받는 금속 재료의 불연속 변위 각에 대한 연구)

  • Park, Jae-Gyun;Kim, Mi-Rim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.275-281
    • /
    • 2011
  • When a flat bar type metal specimen for general tension test is subject to incremental uniaxial tension, a narrow plastic shear band, so called luders band, is generated at some instance. This band typically has an angle to the axis of specimen and many early researches have been done to investigate the condition and angle of this localized deformation phenomenon by many researchers. This study follows the procedure of Thomas(1961) under plane stress boundary condition. $J_2$ plasticity theory, balance of linear momentum, and constitutive equations are used to derive the angle of luders band under plain strain boundary condition. The result was confirmed by other angle based on acoustic tensor theory.

Characteristics of Friction Factor for Artificially Roughened Surfaces (임의로 거칠게한 표면의 점성 마찰특성)

  • Ha, Tae Woong;Ju, Young Chan;Lee, Yong-Bok;Kim, Chang-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.465-470
    • /
    • 2002
  • For measuring friction-factor of artificially-roughened surfaces which are usually applied on damper seals, flat plate test apparatus is designed and fabricated. the measurement of leakage and pressure distribution through round-hole pattern specimen with different hole area is described and a method is discussed for determining the friction-factor experimentally. Results show that the friction-factor of the round-hole pattern surfaces is bigger than that of smooth surface and increases as increasing the hole area. A empirical friction factor model for round-hole pattern surface is defined as the Moody's friction factor formula.

  • PDF

Structural Behavior in Slab-Column Connections with Shear Plate Using Structural Experiment and Non-destructive Test, Spectral Analysis of Surface Waves (구조 실험과 SASW를 이용한 플랫 플레이트 기둥-슬래브접합부에서의 구조적 거동에 관한 연구)

  • Joo, Hyun-Jee;Cho, Young-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.48-51
    • /
    • 2004
  • This paper is to study the response of flat plate slab-column connections consisting of various types of shear reinforcement and steel plate subjected to gravity loadings, mainly punching shear forces using the non-destructive testing, spectral analysis of surface waves and structural experiments. The base specimen failed due to punching shear generated from the gravity. The three other types of slab shear reinforcement and steel plate showed effective in resisting punching shear for these types of connections under gravity loading. This study has focused in evaluating the velocity response of a Surface wave during the early age as the poured concrete specimens have been hardened, the possibility of damage detection in the slab-column connection and the relationship between the punching shear forces and the surface wave velocities under the condition that the punching shear forces had gradually increased until the flat plate slab in slab-column connection had been failed.

  • PDF

Characteristics of Friction Factor for Artificially Roughened Surfaces (임의로 거칠게 한 표면의 점성 마찰특성)

  • Ha, Tae-Woong;Ju, Young-Chan;Lee, Yong-Bok;Kim, Chang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.3 s.20
    • /
    • pp.15-20
    • /
    • 2003
  • For measuring friction factor of artificially-roughened surfaces which are usually applied to damper seals, flat plate test apparatus is designed and fabricated. The measurements of leakage flow and pressure distribution through round-hole patterned specimen with different hole areas are described, and a method is discussed for determining the friction factor experimentally. Results show that the friction factor of the round-hole patterned surface is bigger than that of smooth surface, and increases as increasing the hole area. A empirical friction factor model for the round-hole patterned surface can be descrived by the Moody's friction factor formula.

Mechanical Property of Liquid Phase Diffusion Bonded Joint of Rene80/B/Rene80 (Rene 80/B/Rene 80 액상 확산접합부의 기계적 성질)

  • 정재필;강춘식
    • Journal of Welding and Joining
    • /
    • v.13 no.3
    • /
    • pp.125-133
    • /
    • 1995
  • Rene80 superalloy was liquid phase diffusion bonded by using pure boron (B) as an insert material. As a basic study for the possibility of practical application of this bonding method, hardness and high temperature tensile strength of the bonded joint and metallurgical analysis were investigated. As experimental results, hardness of the bonded joint was homogenized after bonding and the tensile strength at 1144K was obtained to 90% of that of base metal. But there were some problems to be improved also, that means the joint was hardened after bonding due to increase of B content and elongation was much lower than that of base metal. Flat area and (Mo, Cr, W) boride, which should be harmful for bonding strength, were observed on the fractured surface of the tensile tested specimen.

  • PDF

Cracking Threshold Analysis for Nanoindetation Using 3D Finite-Element Method (3차원 유한요소법을 이용한 나노압입에 의한 균열발생 하한계 해석)

  • Koo, Jae-Mean
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.304-310
    • /
    • 2004
  • In this paper, cracking threshold for nanoindentation is analyzed by using 3D finited-element method. The analysis by maximum principal stress criterion can obtain the reliable results for determining to crack initiation location and load. Because the ratio of maximum principal stress to indentation depth for Victors indentation is smaller than flat-plane-column indentation and cracking for Victors indentation occurs from the inner part of specimen difficult to measure crack length, the nanoindentation facture test for flat-plane-column indentation is more effective.