A flash flood is one of the most hazardous natural events caused by heavy rainfall in a short period of time in mountainous areas with steep slopes. Early warning of flash flood is vital to minimize damage, but challenges remain in the enhancing accuracy and reliability of flash flood forecasts. The forecasters can easily determine whether flash flood is occurred using the flash flood guidance (FFG) comparing to rainfall volume of the same duration. In terms of this, the hydrological model that can consider the basin characteristics in real time can increase the accuracy of flash flood forecasting. Also, the predicted radar rainfall has a strength for short-lead time can be useful for flash flood forecasting. Therefore, using both hydrological models and radar rainfall forecasts can improve the accuracy of flash flood forecasts. In this study, FFG was applied to simulate some flash flood events in the Taehwa river basin by using of SURR model to consider soil moisture, and applied to the flash flood forecasting using predicted radar rainfall. The hydrometeorological data are gathered from 2011 to 2021. Furthermore, radar rainfall is forecasted up to 6-hours has been used to forecast flash flood during heavy rain in August 2021, Wulsan area. The accuracy of the predicted rainfall is evaluated and the correlation between observed and predicted rainfall is analyzed for quantitative evaluation. The results show that with a short lead time (1-3hr) the result of forecast flash flood events was very close to collected information, but with a larger lead time big difference was observed. The results obtained from this study are expected to use for set up the emergency planning to prevent the damage of flash flood.
The typhoon Rusa passed through the Korean peninsula from the west-southern part to the east-northern part in the summer season of 2002. The flash flood due to the Rusa was occurred over the Korean peninsula and especially the damage was concentrated in Kangnung, Yangyang, Kosung, and Jeongsun areas of Kangwon-Do. Since the latter half of the 1990s the flash flood has became one of the frequently occurred natural disasters in Korea. Flash floods are a significant threat to lives and properties. The government has prepared against the flood disaster with the structural and nonstructural measures such as dams, levees, and flood forecasting systems. However, since the flood forecasting system requires the rainfall observations as the input data of a rainfall-runoff model, it is not a realistic system for the flash flood which is occurred in the small basins with the short travel time of flood flow. Therefore, the flash flood forecasting system should be constructed for providing the realistic alternative plan for the flash flood. To do so, firstly, Flash Flood Monitoring and Prediction (FFMP) Model must be developed suitable to Korea terrain. In this paper, We develop the FFMP model which is based on GIS, Radar techniques and hydro-geomorphologic approaches. We call it the F2MAP model. F2MAP model has three main components (1) radar rainfall estimation module for the Quantitative Precipitation Forecasts (QPF), (2) GIS Module for the Digital terrain analysis, called TOPAZ(Topographic PArametiZation), (3) hydrological module for the estimation of threshold runoff and Flash Flood Guidance(FFG). For the performance test of the model developed in this paper, F2MAP model applied to the Kangwon-Do, Korea, where had a severe damage by the Typhoon Rusa in August, 2002. The result shown that F2MAP model is suitable for the monitoring and the prediction of flash flood.
유역 상류의 소규모 산지 유역 또는 도시 배수분구 정도의 도시 유역은 지체시간이 수 십 여분에 불과하기 때문에 우량계만으로는 대응에 필요한 충분한 예측 선행시간을 확보하기 어렵다. 도시 및 소규모 산지 유역에서와 같이 지체시간이 짧은 유역에서 발생하는 돌발홍수는 더 이상 우량계만으로 예보가 불가능하다. 도달시간이 짧은 도시 및 산지에서는 지체시간 외에 강수 예측을 통한 홍수예보 선행시간을 확보하는 것이 매우 중요하다. 한강홍수통제소에서는 강우레이더 강우강도를 초단기 예측 모델인 Mcgill Algorithm for Precipitation-nowcast by Lagrangian Extrapolation(MAPLE) 알고리즘의 입력 자료로 활용하여 초단기 예측 강수 자료를 생산하고 있다. 한국건설기술연구원의 돌발홍수연구센터는 한강홍수통제소에서 생산하고 있는 초단기 예측 강수 자료를 입력 자료로 하여 돌발홍수 예측 시스템을 구축하였고 2019년부터 동네규모의 1시간 전 돌발홍수정보를 제공하고 있다. 본 연구에서는 돌발홍수연구센터에서 구축한 돌발홍수 예측 시스템을 설명하고 2019년도에 발생한 수재해 사례를 분석하여 전국 도시·산지·소하천 돌발홍수 예측 시스템의 예측 정확도를 검증하였다. 돌발홍수 예측 시스템의 정확도 검증에는 총 31개의 수재해 사례를 적용하였고 예측 정확도는 Probability of Detection (POD) 기준으로 90.3%로 매우 높게 나타났다.
A developed Quantitative Flood Forecasting (QFF) model was applied to the mid-Atlantic region of the United States. The model incorporated the evolving structure and frequency of intense weather systems of the study area for improved flood forecasting. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters associated with synoptic atmospheric conditions as Input. Here, we present results from the application of the Quantitative Flood Forecasting (QFF) model in 2 small watersheds along the leeward side of the Appalachian Mountains in the mid-Atlantic region. Threat scores consistently above 0.6 and close to 0.8 ∼ 0.9 were obtained fur 18 hour lead-time forecasts, and skill scores of at least 40% and up to 55 % were obtained.
Accurate quantitative forecasting of rainfall for basins with a short response time is essential to predict flash floods. In this study, a Quantitative Flood Forecasting (QFF) model was developed by incorporating the evolving structure and frequency of intense weather systems and by using neural network approach. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters as input. The convective classification and tracking system (CCATS) was used to identify and quantify storm properties such as lifetime, area, eccentricity, and track. As in standard expert prediction systems, the fundamental structure of the neural network model was learned from the hydroclimatology of the relationships between weather system, rainfall production and streamflow response in the study area. All these processes stretched leadtime up to 18 hours. The QFF model will be applied to the mid-Atlantic region of United States in a forthcoming paper.
Up to now, a lot of houses, roads and other urban facilities have been damaged by natural disasters such as flash floods and landslides. It is reported that the size and frequency of disasters are growing greatly due to global warming. In order to mitigate such disaster, flood forecasting and alerting systems have been developed for the Han river, Geum river, Nak-dong river and Young-san river. These systems, however, do not help small municipal departments cope with the threat of flood. In this study, a real-time urban flood forecasting service (U-FFS) is developed for ubiquitous computing city which includes small river basins. A test bed is deployed at Tan-cheon in Gyeonggido to verify U-FFS. It is found that U-FFS can forecast the water level of outlet of river basin and provide real-time data through internet during heavy rain. Furthermore, it is expected that U-FFS presented in this study can be applied to ubiquitous computing city (u-City) and/or other cities which have suffered from flood damage for a long time.
Up to now, a lot of houses, roads and other urban facilities have been damaged by natural disasters such as flash floods and landslides. It is reported that the size and frequency of disasters are growing greatly due to global warming. In order to mitigate such disaster, flood forecasting and alerting systems have been developed for the Han river, Geum river, Nak-dong river and Young-san river. These systems, however, do not help small municipal departments cope with the threat of flood. In this study, a real-time urban flood forecasting service (U-FFS) is developed for ubiquitous computing city which includes small river basins. A test bed is deployed at Tan-cheon in Gyeonggido to verify U-FFS. Wireless sensors such as rainfall gauge and water lever gauge are installed to develop hydrologic forecasting model and CCTV camera systems are also incorporated to capture high definition images of river basins. U-FFS is based on the ANFIS (Adaptive Neuro-Fuzzy Inference System) that is data-driven model and is characterized by its accuracy and adaptability. It is found that U-FFS can forecast the water level of outlet of river basin and provide real-time data through internet during heavy rain. It is revealed that U-FFS can predict the water level of 30 minutes and 1 hour later very accurately. Unlike other hydrologic forecasting model, this newly developed U-FFS has advantages such as its applicability and feasibility. Furthermore, it is expected that U-FFS presented in this study can be applied to ubiquitous computing city (U-City) and/or other cities which have suffered from flood damage for a long time.
본 연구의 목적은 돌발홍수예경보 시스템의 개념을 국내에 도입하고 미소유역 규모의 한계유출량을 산정할 수 있는 시스템을 개발하는데 있다. 입력자료 설정에서 돌발홍수예보 입력파일 생성 등 총 9단계로 구성된 한계유출량 산정 GUI 시스템은 약 5 $\textrm{km}^2$ 규모로 소유역을 구분하며, 구분된 각 미소유역별 수문특성인자, 제방월류유량, 단위도 첨두유량 및 한계유출량을 산정한다. 개발된 시스템을 평창강 유역에 적용한 결과, 지속시간 1시간의 토양이 포화된 상태에서 소하천이 범람하는데 요구되는 유효강우량을 나타내는 한계유출량은 18.72~81.96 mm의 범위를 갖으며, 평균값은 46.39 mm인 것으로 나타났다. 평창강 유역의 미소유역별 산정된 한계유출량을 국외의 타 연구 사례와 비교한 결과 평창강 유역에서 산정된 결과는 적절한 것으로 판단된다. 본 연구에서 구축된 ArcView/Avenue 기반의 한계유출량 산정 GUI 시스템은 국내 타 유역에도 적용 가능할 것으로 판단되어 향후 국내 돌발 홍수예경보 시스템의 일부로 활용될 수 있을 것으로 판단된다.
최근 들어 기상 이변에 따라 단시간 동안에 특정 소유역에 집중하는 호우 또는 초과우량에 의한 국지성 돌발홍수가 빈번히 발생함에 따라, 이로 인한 인명과 재산의 상당한 위험과 손실은 전 세계적인 것으로서 우리나라도 증가일로에 있다. 돌발홍수는 일반적으로 급경사 소유역에서 집중적인 강우에 의해 발생하여 빠른 유출과 토석류를 동반하기 때문에, 홍수피해를 대비하기 위한 사전 홍수예보시간이 부족할 정도로 급격히 빠른 홍수의 특성을 보인다. 본 연구의 목적은 대상유역의 확률강우량으로부터 돌발홍수지수(flash flood index, FFI)를 산정하여 돌발홍수의 심각성 정도를 정량적으로 분석하고자 한다. 특히 미계측 유역하천에서의 지역 홍수예 경보를 위한 기초자료를 제공할 수 있도록, 대상유역에 대하여 상대적인 돌발홍수심도를 제시할 수 있는 FFI-D-F(돌발홍수지수-지속시간-빈도) 관계곡선을 개발하였다. 또한 FFI-D-F 관계곡선은 현존 및 계획 방재시설물의 돌발홍수 대응능력 및 잔여홍수위험 평가에 활용될 수 있을 것으로 기대된다.
돌발홍수는 짧은 지속기간, 급격한 경사와 불투수층에 대해 강한 강우로 인하여 피해를 유발하는 홍수를 말한다. 돌발홍수는 강우가 돌발홍수기준(Flash Flood Guidance)을 초과하는 경우에 발생하게 되며, 따라서 돌발홍수기준을 정확히 산정하는 것이 돌발홍수예보의 정확성에 크게 기여한다. 즉, 강우-유출관계가 갖고 있는 불확실성(uncertainty)을 최소화 할수록 돌발홍수기준을 정확하게 산정할 수 있으며, 강우-유출 모형은 각각 고유의 매개변수와 특성을 갖고 있으므로 어떠한 강우-유출 모형을 사용하여 강우-유출관계를 도출하느냐에 따라 불확실성의 정도가 크게 좌우된다. 본 연구에서는 4개의 강우-유출모형(HEC-HMS 모형, 저류함수모형, SSARR 모형, TANK 모형)의 모의값에 Monte Carlo 모의 방법을 적용하여 95%신뢰수준에 대한 신뢰한계를 추정하여 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.