• Title/Summary/Keyword: Flash flood forecasting

Search Result 34, Processing Time 0.025 seconds

Assessment of Flash Flood Forecasting based on SURR model using Predicted Radar Rainfall in the TaeHwa River Basin

  • Duong, Ngoc Tien;Heo, Jae-Yeong;Kim, Jeong-Bae;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.146-146
    • /
    • 2022
  • A flash flood is one of the most hazardous natural events caused by heavy rainfall in a short period of time in mountainous areas with steep slopes. Early warning of flash flood is vital to minimize damage, but challenges remain in the enhancing accuracy and reliability of flash flood forecasts. The forecasters can easily determine whether flash flood is occurred using the flash flood guidance (FFG) comparing to rainfall volume of the same duration. In terms of this, the hydrological model that can consider the basin characteristics in real time can increase the accuracy of flash flood forecasting. Also, the predicted radar rainfall has a strength for short-lead time can be useful for flash flood forecasting. Therefore, using both hydrological models and radar rainfall forecasts can improve the accuracy of flash flood forecasts. In this study, FFG was applied to simulate some flash flood events in the Taehwa river basin by using of SURR model to consider soil moisture, and applied to the flash flood forecasting using predicted radar rainfall. The hydrometeorological data are gathered from 2011 to 2021. Furthermore, radar rainfall is forecasted up to 6-hours has been used to forecast flash flood during heavy rain in August 2021, Wulsan area. The accuracy of the predicted rainfall is evaluated and the correlation between observed and predicted rainfall is analyzed for quantitative evaluation. The results show that with a short lead time (1-3hr) the result of forecast flash flood events was very close to collected information, but with a larger lead time big difference was observed. The results obtained from this study are expected to use for set up the emergency planning to prevent the damage of flash flood.

  • PDF

돌발홍수 모니터링 및 예측 모형을 이용한 예측(F2MAP)태풍 루사에 의한 양양남대천 유역의 돌발홍수 모니터링

  • Kim, Byung-Sik;Hong, Jun-Bum;Choi, Kyu-Hyun;Yoon, Seok-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1145-1149
    • /
    • 2006
  • The typhoon Rusa passed through the Korean peninsula from the west-southern part to the east-northern part in the summer season of 2002. The flash flood due to the Rusa was occurred over the Korean peninsula and especially the damage was concentrated in Kangnung, Yangyang, Kosung, and Jeongsun areas of Kangwon-Do. Since the latter half of the 1990s the flash flood has became one of the frequently occurred natural disasters in Korea. Flash floods are a significant threat to lives and properties. The government has prepared against the flood disaster with the structural and nonstructural measures such as dams, levees, and flood forecasting systems. However, since the flood forecasting system requires the rainfall observations as the input data of a rainfall-runoff model, it is not a realistic system for the flash flood which is occurred in the small basins with the short travel time of flood flow. Therefore, the flash flood forecasting system should be constructed for providing the realistic alternative plan for the flash flood. To do so, firstly, Flash Flood Monitoring and Prediction (FFMP) Model must be developed suitable to Korea terrain. In this paper, We develop the FFMP model which is based on GIS, Radar techniques and hydro-geomorphologic approaches. We call it the F2MAP model. F2MAP model has three main components (1) radar rainfall estimation module for the Quantitative Precipitation Forecasts (QPF), (2) GIS Module for the Digital terrain analysis, called TOPAZ(Topographic PArametiZation), (3) hydrological module for the estimation of threshold runoff and Flash Flood Guidance(FFG). For the performance test of the model developed in this paper, F2MAP model applied to the Kangwon-Do, Korea, where had a severe damage by the Typhoon Rusa in August, 2002. The result shown that F2MAP model is suitable for the monitoring and the prediction of flash flood.

  • PDF

Development of flood forecasting system on city·mountains·small river area in Korea and assessment of forecast accuracy (전국 도시·산지·소하천 돌발홍수예측 시스템 개발 및 정확도 평가)

  • Hwang, Seokhwan;Yoon, Jungsoo;Kang, Narae;Lee, Dong-Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.3
    • /
    • pp.225-236
    • /
    • 2020
  • It is not easy to provide sufficient lead time for flood forecast in urban and small mountain basins using on-ground rain gauges, because the time concentration in those basins is too short. In urban and small mountain basins with a short lag-time between precipitation and following flood events, it is more important to secure forecast lead times by predicting rainfall amounts. The Han River Flood Control Office (HRFCO) in South Korea produces short-term rainfall forecasts using the Mcgill Algorithm for Precipitation-nowcast by Lagrangian Extrapolation (MAPLE) algorithm that converts radar reflectance of rainfall events. The Flash Flood Research Center (FFRC) in the Korea Institute of Civil Engineering and Building Technology (KICT) installed a flash flood forecasting system using the short-term rainfall forecast data produced by the HRFCO and has provided flash flood information in a local lvel with 1-hour lead time since 2019. In this study, we addressed the flash flood forecasting system based on the radar rainfall and the assessed the accuracy of the forecasting system for the recorded flood events occurred in 2019. A total of 31 flood disaster cases were used to evaluate the accuracy and the forecast accuracy was 90.3% based on the probability of detection.

FLASH FLOOD FORECASTING USING REMOTELY SENSED INFORMATION AND NEURAL NETWORKS PART II : MODEL APPLICATION

  • Kim, Gwang-seob;Lee, Jong-Seok
    • Water Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.123-134
    • /
    • 2002
  • A developed Quantitative Flood Forecasting (QFF) model was applied to the mid-Atlantic region of the United States. The model incorporated the evolving structure and frequency of intense weather systems of the study area for improved flood forecasting. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters associated with synoptic atmospheric conditions as Input. Here, we present results from the application of the Quantitative Flood Forecasting (QFF) model in 2 small watersheds along the leeward side of the Appalachian Mountains in the mid-Atlantic region. Threat scores consistently above 0.6 and close to 0.8 ∼ 0.9 were obtained fur 18 hour lead-time forecasts, and skill scores of at least 40% and up to 55 % were obtained.

  • PDF

FLASH FLOOD FORECASTING USING ReMOTELY SENSED INFORMATION AND NEURAL NETWORKS PART I : MODEL DEVELOPMENT

  • Kim, Gwang-seob;Lee, Jong-Seok
    • Water Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.113-122
    • /
    • 2002
  • Accurate quantitative forecasting of rainfall for basins with a short response time is essential to predict flash floods. In this study, a Quantitative Flood Forecasting (QFF) model was developed by incorporating the evolving structure and frequency of intense weather systems and by using neural network approach. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters as input. The convective classification and tracking system (CCATS) was used to identify and quantify storm properties such as lifetime, area, eccentricity, and track. As in standard expert prediction systems, the fundamental structure of the neural network model was learned from the hydroclimatology of the relationships between weather system, rainfall production and streamflow response in the study area. All these processes stretched leadtime up to 18 hours. The QFF model will be applied to the mid-Atlantic region of United States in a forthcoming paper.

  • PDF

Monitoring Technology for Flood Forecasting in Urban Area (도시하천방재를 위한 지능형 모니터링에 관한 연구)

  • Kim, Hyung-Woo;Lee, Bum-Gyo
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.405-408
    • /
    • 2008
  • Up to now, a lot of houses, roads and other urban facilities have been damaged by natural disasters such as flash floods and landslides. It is reported that the size and frequency of disasters are growing greatly due to global warming. In order to mitigate such disaster, flood forecasting and alerting systems have been developed for the Han river, Geum river, Nak-dong river and Young-san river. These systems, however, do not help small municipal departments cope with the threat of flood. In this study, a real-time urban flood forecasting service (U-FFS) is developed for ubiquitous computing city which includes small river basins. A test bed is deployed at Tan-cheon in Gyeonggido to verify U-FFS. It is found that U-FFS can forecast the water level of outlet of river basin and provide real-time data through internet during heavy rain. Furthermore, it is expected that U-FFS presented in this study can be applied to ubiquitous computing city (u-City) and/or other cities which have suffered from flood damage for a long time.

  • PDF

A Development of Real-time Flood Forecasting System for U-City (Ubiquitous 환경의 U-City 홍수예측시스템 개발)

  • Kim, Hyung-Woo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.181-184
    • /
    • 2007
  • Up to now, a lot of houses, roads and other urban facilities have been damaged by natural disasters such as flash floods and landslides. It is reported that the size and frequency of disasters are growing greatly due to global warming. In order to mitigate such disaster, flood forecasting and alerting systems have been developed for the Han river, Geum river, Nak-dong river and Young-san river. These systems, however, do not help small municipal departments cope with the threat of flood. In this study, a real-time urban flood forecasting service (U-FFS) is developed for ubiquitous computing city which includes small river basins. A test bed is deployed at Tan-cheon in Gyeonggido to verify U-FFS. Wireless sensors such as rainfall gauge and water lever gauge are installed to develop hydrologic forecasting model and CCTV camera systems are also incorporated to capture high definition images of river basins. U-FFS is based on the ANFIS (Adaptive Neuro-Fuzzy Inference System) that is data-driven model and is characterized by its accuracy and adaptability. It is found that U-FFS can forecast the water level of outlet of river basin and provide real-time data through internet during heavy rain. It is revealed that U-FFS can predict the water level of 30 minutes and 1 hour later very accurately. Unlike other hydrologic forecasting model, this newly developed U-FFS has advantages such as its applicability and feasibility. Furthermore, it is expected that U-FFS presented in this study can be applied to ubiquitous computing city (U-City) and/or other cities which have suffered from flood damage for a long time.

  • PDF

Threshold Runoff Computation for Flash flood forecast on Small Catchment Scale (돌발홍수예보를 위한 미소유역의 한계유출량 산정)

  • Kim, Woon-Tae;Bae, Deg-Hyo;Cho, Chun-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.5
    • /
    • pp.553-561
    • /
    • 2002
  • The objectives of this study are to introduce flash flood forecasting system in Korea and to develop a system for computing threshold runoff on very fine catchment scale. The developed GUI system composed of 9 steps starting from input data preparation to Input file creation for flash flood forecasting compute basin subdivision, hydrologic subbasin characteristics, bankfull flows, unit peak flows and threshold runoffs on about 5 $\textrm{km}^2$ scale. When the developed system was applied on Pyungchang IHP basin, the computed 1-hour threshold runoffs ranged 18.72~81.96mm with average value of 46.39mm. Judging from the comparison of the computed threshold runoffs between this study area and three other basins in United States, the computed results in this study were reasonable. It can be concluded that the developed system on ArcView/Avenue are useful for computing threshold runoff on small catchment and can be used as a component of flash flood forecasting system.

Estimation of the Flash Flood Index by the Probable Rainfall Data for Ungauged Catchments (미계측 유역에서의 확률강우에 대한 돌발홍수지수 산정)

  • Kim, Eung-Seok;Choi, Hyun-Il;Jee, Hong-Kee
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.81-88
    • /
    • 2010
  • As there occurs recently and frequently a flash flood due to the climate change, a sudden local flood of great volume and short duration caused by heavy or excessive rainfall in a short period of time over a small area, it is increasing that significant danger and loss of life and property in Korea as well as the whole world. Since a flash flood usually occurs as the result of intense rainfall over small steep slope regions and has rapid runoff and debris flow, a flood rises quite quickly with little or no advance warning to prevent flood damage. The aim of this study is to quantify the severity of flash food by estimation of a flash flood index(FFI) from probability rainfall data in a study basin. FFI-D-F(FFI-Duration-Frequency) curves that present the relative severity of flash flood are developed for a study basin to provide regional basic information for the local flood forecasting and warning system particularly in ungauged catchments. It is also expected that FFI-D-F curves can be utilized for evaluation on flash flood mitigation ability and residual flood risk of both existing and planned flood control facilities.

Estimation of Flash Flood Guidance considering Uncertainty of Rainfall-Runoff Model (강우-유출 모형의 불확실성을 고려한 돌발홍수기준)

  • Lee, Keon-Haeng;Kim, Hung-Soo;Kim, Soo-Jun;Kim, Byung-Sik
    • Journal of Wetlands Research
    • /
    • v.12 no.3
    • /
    • pp.155-163
    • /
    • 2010
  • The flash flood is characterized as flood leading to damage by heavy rainfall occurred in steep slope and impervious area with short duration. Flash flood occurs when rainfall exceeds Flash Flood Guidance(FFG). So, the accurate estimation of FFG will be helpful in flash flood forecasting and warning system. Say, if we can reduce the uncertainty of rainfall-runoff relationship, FFG can be estimated more accurately. However, since the rainfall-runoff models have their own parameter characteristics, the uncertainty of FFG will depend upon the selection of rainfall-runoff model. This study used four rainfall-runoff models of HEC-HMS model, Storage Function model, SSARR model and TANK model for the estimation of models' uncertainties by using Monte Carlo simulation. Then, we derived the confidence limits of rainfall-runoff relationship by four models on 95%-confidence level.