• 제목/요약/키워드: Flash Point Tester

검색결과 76건 처리시간 0.019초

2-Methyl-1-butanol의 화재 및 폭발 특성치의 측정 (The Measurement of the Fire and Explosion Properties for 2-Methyl-1-butanol)

  • 하동명
    • 한국가스학회지
    • /
    • 제19권4호
    • /
    • pp.8-14
    • /
    • 2015
  • 화학산업에서 다양하게 사용되고 있는 2-methyl-1-butanol의 안전한 취급을 위해서 인화점과 최소자연발화온도를 측정하였다. 2-methyl-1-butanol의 폭발하한계는 실험에서 얻어진 하부인화점을 이용하여 계산하였다. Setaflash 밀폐식은 $40^{\circ}C$, Pensky-Martens 밀폐식은 $44^{\circ}C$ 그리고 Tag 개방식은 $49^{\circ}C$, Cleveland 개방식에서는 $47^{\circ}C$로 측정되었다. ASTM E659 장치에 의한 최소자연발화온도는 $335^{\circ}C$로 측정되었다. 측정된 하부인화점 $40^{\circ}C$에 의한 폭발하한계는 1.30 Vol.%로 계산되었다. 폭발한계는 측정된 인화점이나 문헌에 제시된 인화점을 이용하여 예측 가능함을 알 수 있었다.

Propionic Anhydride의 연소특성치의 측정 및 예측 (Measurement and Prediction of the Combustible Properties of Propionic Anhydride)

  • 하동명
    • 한국가스학회지
    • /
    • 제20권3호
    • /
    • pp.66-72
    • /
    • 2016
  • 화학산업에서 다양하게 사용되고 있는 propionic anhydride의 안전한 취급을 위해서 인화점과 최소자연발화온도를 측정하였다. Propionic anhydride의 폭발하한계는 실험에서 얻어진 하부인화점을 이용하여 계산하였다. Propionic anhydride의 인화점 측정에서 Setaflash 밀폐식은 $40^{\circ}C$, Pensky-Martens 밀폐식은 $44^{\circ}C$ 그리고 Tag 개방식은 $49^{\circ}C$, Cleveland 개방식에서는 $47^{\circ}C$로 측정되었다. ASTM E659 장치에 의한 최소자연발화온도는 $335^{\circ}C$로 측정되었다. 측정된 하부인화점 $40^{\circ}C$에 의한 폭발하한계는 1.30 Vol.%로 계산되었다. 폭발한계는 측정된 인화점이나 문헌에 제시된 인화점을 이용하여 예측 가능함을 알 수 있었다.

MSDS (Material Safety Data Sheet)를 위한 벤질알코올 연소특성치의 측정 및 예측 (The Measurement and Prediction of the Combustible Properties of of Benzyl-Alcohol for MSDS (Material Safety Data Sheet))

  • 하동명
    • Korean Chemical Engineering Research
    • /
    • 제55권2호
    • /
    • pp.190-194
    • /
    • 2017
  • 사업장에서 화재 및 폭발을 예방하기 위해서는 연소특성치로 인화점, 폭발한계, 최소자연발화온도 등을 들 수 있다. 화학공정의 안전을 위해서 취급 물질의 정확한 물질보건안전자료(MSDS)의 연소특성치 사용은 매우 중요하다. 화학산업에서 다양하게 사용되고 있는 벤질알코올의 안전한 취급을 위해서 인화점과 최소자연발화온도를 측정하였다. 벤질알코올의 폭발하한계는 실험에서 얻어진 하부인화점을 이용하여 계산하였다. 벤질알코올의 Setaflash 밀폐식은 $90^{\circ}C$, Pensky-Martens 밀폐식에서는 $93^{\circ}C$ 그리고 Tag 개방식에서는 $97^{\circ}C$, Cleveland 개방식에서는 $100^{\circ}C$로 측정되었다. ASTM E659 장치에 의한 측정된 벤질알코올의 최소자연발화온도는 $408^{\circ}C$로 측정되었다. Setaflash 밀폐식에 의해 측정된 벤질알코올의 하부인화점 $90^{\circ}C$의 폭발하한계는 1.17 vol%로 계산되었다. 본 연구에서는 Setaflash 밀폐식에 의해 측정된 벤질알코올의 하부인화점을 이용하여 폭발하한계의 예측이 가능하였다.

아닐린의 연소특성치의 측정 및 예측에 관한 연구 (The Study on Measurement and Prediction of Combustible Properties for Aniline)

  • 하동명
    • 한국가스학회지
    • /
    • 제18권4호
    • /
    • pp.44-50
    • /
    • 2014
  • 아닐린의 안전한 취급을 위해, 폭발한계는 문헌을 통해 고찰하였으며, 인화점과 발화지연시간에 의한 자연발화온도는 시험장치를 이용하여 측정하였다. 인화점의 경우 밀폐식 장치인 Setaflash와 Penski-Martens 에 의한 하부인화점은 각 각 $66^{\circ}C$$73^{\circ}C$로 측정되었으며, 개방식인 Tag와 Cleveland 에서는 각 각 $72^{\circ}C$$78^{\circ}C$로 측정되었다. ASTM E659 장치를 사용하여 자연발화온도와 발화지연시간을 측정하였고, 최소 자연발화온도는 $590^{\circ}C$로 측정되었다. 아닐린의 측정된 인화점을 이용하여 폭발하한계와 상한계는 1.16 Vol.%와 8.36 Vol.%로 게산되었다.

노말에틸아닐린의 화재 및 폭발 특성치의 측정 및 예측 (Measurement and Prediction of Fire and Explosion Properties of n-Ethylanilne)

  • 하동명
    • Korean Chemical Engineering Research
    • /
    • 제56권4호
    • /
    • pp.474-478
    • /
    • 2018
  • 공정안전을 위해서는 산업현장에서 취급하는 가연성물질의 화재 및 폭발 특성치가 있어야 한다. 사업장에서 사고를 예방하기 위한 연소특성치로 인화점, 연소점, 전폭발한계, 최소자연발화온도 등을 들 수 있다. 그러나 물질보건안전자료(MSDS)에서 제시하고 있는 특성치는 문헌들에 따라 달리 제시되고 있는데, 가연성물질을 안전하게 처리, 수송, 취급하기 위해서는 정확한 연소특성치가 필요하다. 화학산업에서 중간제품, 고무약품 등의 원료로 다양하게 사용되고 있는 노말에틸아닐린을 선정하였다. 그리고 노말에틸아닐린 안전한 취급을 위해서 인화점, 연소점 그리고 최소자연발화온도를 측정하였다. 노말에틸아닐린의 폭발하한계는 실험에서 얻어진 하부인화점을 이용하여 계산하였다. 노말에틸아닐린의 Setaflash 밀폐식은 $77^{\circ}C$, Pensky-Martens 밀폐식에서는 $82^{\circ}C$ 그리고 Tag 개방식에서는 $85^{\circ}C$, Cleveland 개방식에서는 $92^{\circ}C$로 측정되었다. ASTM E659 장치에 의한 측정된 노말에틸아닐린의 최소자연발화온도는 $396^{\circ}C$로 측정되었다. Setaflash 밀폐식에 의해 측정된 노말에틸아닐린의 하부인화점 $77^{\circ}C$에 의한 폭발하한계는 1.02 vol%로 계산되었다. 본 연구에서는 밀폐식에 의해 측정된 노말에틸아닐린의 하부인화점을 이용하여 폭발하한계의 예측이 가능하였다. 본 연구에서 제시된 노말에틸아닐린의 발화온도와 발화지연시간의 관계식은 노말에틸아닐린의 다른 발화온도에서도 발화지연시간의 예측이 가능해졌다.

바이오디젤 연료의 연소 특성 (Combustion Property of Biodiesel Fuel)

  • 송영호;신백우;하동명;정국삼
    • 한국화재소방학회논문지
    • /
    • 제23권4호
    • /
    • pp.19-24
    • /
    • 2009
  • 자동차의 비약적인 증가로 인해 비롯된 환경오염이 사회적 주된 문제가 되기 때문에 유해한 배기가스의 방출을 감소시키는 방법에 대해 관심이 고조되고 있다. 바이오디젤을 생산 원료로서의 폐식용유의 활용은 원료의 안정적인 공급뿐만 아니라 바이오디젤의 가격을 낮추는데 유용하다. 본 연구는 바이오디젤 연료의 혼합 비율에 따른 연소성 및 열적 특성을 검토하기 위해 수행되었다. 이 연구를 위하여 Tag 밀폐식, Cleveland 개방식 인화점 시험기와 자연발화점 시험기를 이용하여 인화점 및 연소점, 자연발화점을 측정하였다. 그 결과 바이오디젤의 혼합 비율이 높아짐에 따라 인화점 및 연소점, 자연발화점이 증가하였다.

크실렌 이성질체의 인화점과 최소자연발화온도의 측정 (Measurement of Flash Points and Autoignition Temperatures for Xylene Isomers)

  • 하동명;이성진
    • 한국가스학회지
    • /
    • 제13권4호
    • /
    • pp.40-45
    • /
    • 2009
  • MSDS 자료의 적정성을 고찰하기 위해 크실렌 이성질체에 대해 Pensky-Martens 밀폐식(ASTM D93), Setaflash 밀폐식(ASTM D3278), Tag 개방식(ASTM D1310), Cleveland 개방식(ASTM D92) 장치 등을 이용하여 인화점을 측정하였으며, 또한 최소자연발화온도는 ASTM E659-78장치를 사용하여 측정하고, 문헌값들과 한국산업안전보건공단의 MSDS 자료와 비교하였다. 그 결과, 측정된 인화점과 최소자연발화온도는 이들과 차이를 나타내어 안전의 목적을 위해 연소특성치 고찰이 필요함을 알 수 있었다.

  • PDF

MSDS 개선을 위한 tert-Butylbenzene의 연소특성치의 측정 (The Measurement of the Combustible Properties of tert-Butylbenzene for the Improvement of MSDS (Material Safety Data Sheet))

  • 하동명
    • 한국화재소방학회논문지
    • /
    • 제31권3호
    • /
    • pp.25-30
    • /
    • 2017
  • 가연성 물질의 다양한 연소 특성 때문에 이들 물질의 안전한 사용, 취급 및 운송을 위해서는 정확한 물질 안전정보가 필수적이다. 인화점, 연소점, 폭발한계 및 최소자연발화온도(AIT)는 위험한 물질을 취급하는 화학산업과 실험실 등에서 특별한 관심을 필요로 하는 중요한 안전 매개변수이다. 본 연구에서는 화학산업에 중간제로 널리 사용되고 있는 tert-butylbenzene을 선정하였다. tert-Butylbenzene 연소특성치의 신뢰도를 고찰하기 위해서 인화점, 연소점, 최소발화온도를 측정하였고, 폭발한계는 측정된 인화점을 이용하여 계산하였다. Setaflash와 Pensky-Martens 밀폐식 장치에 의한 tert-butylbenzene의 하부인화점은 $39^{\circ}C$$44^{\circ}C$로 측정되었으며, Tag와 Cleveland 개방식에서는 $51^{\circ}C$$54^{\circ}C$로 측정되었다. 그리고 Tag와 Cleveland에 의한 연소점은 $54^{\circ}C$$58^{\circ}C$로 측정되었다. ASTM E659 장치를 사용하여 tert-butylbenzene 의 자연발화온도와 발화지연시간을 측정하였고, 그 결과 tert-butylbenzene의 최소자연발화온도(AIT)는 $450^{\circ}C$로 측정되었다. 또한 Setaflash에 의해 측정된 하부인화점 $39^{\circ}C$를 이용한 결과 폭발하한계는 0.68 vol%로 계산되었다.

Measurement and Prediction of the Flash Points for Flammable Liquid Mixtures with Non-flammable Component

  • Ha, Dong-Myeong;Yu, Hyun-Sik;Kang, Gyeun-Hee;Ann, Jeong-Jin;Lee, Sung-Jin
    • International Journal of Safety
    • /
    • 제7권2호
    • /
    • pp.12-16
    • /
    • 2008
  • Lower flash points for the binary systems, carbon tetrachloride+o-xylene and water+n-butanol were measured by Pensky-Martens closed cup tester. The Raoult's law and optimization method using van Laar equation were used to predict the lower flash points and were compared with experimental data. The calculated values based on the optimization method were found to be better than those based on the Raoult's law.

라울의 법칙과 다중회귀분석법에 의한 n-Nonane+n-Decane+n-Tridecane 계의 인화점 계산 (The Calculation of Flash Point for n-Nonane+n-Decane+n-Tridecane System by Raoult's Law and Multiple Regression Analysis)

  • 하동명;이성진
    • 한국가스학회지
    • /
    • 제22권2호
    • /
    • pp.52-58
    • /
    • 2018
  • 가연성 액체 혼합물의 화재와 폭발의 위험성을 규정하는 가장 중요한 성질 중 하나는 인화점이다. 본 논문에서는 삼성분계 액체 혼합물인, n-nonane+n-decane+n-tridecane 계의 인화점을 Seta flash 밀폐식 장치를 사용하여 측정하였다. 실험값은 라울의 법칙을 이용한 방법과 다중회귀분석법에 의해 계산된 값들과 비교되었다. 라울의 법칙에 의한 계산된 결과의 절대평균오차는 $0.6^{\circ}C$이었다. 다중회귀분석법에 의해 계산된 결과의 절대평균 오차는 $0.4^{\circ}C$이었다. 절대평균오차에서 알 수 있듯이 다중회귀분석법에 의한 계산값이 라울의 법칙에 의한 계산값에 비해 측정값을 잘 모사하였다.