• Title/Summary/Keyword: Flame-retardant polymer

Search Result 97, Processing Time 0.023 seconds

Synthesis and Characteristics of Magnesium Hydroxide Group Flame Retardant for Polymer Addtives (고분자 첨가제인 난연제로서의 수산화마그네슘계 물질의 합성과 특성)

  • Lee, Dong-Kyu;Kang, Kuk-Hyoun;Lee, Jin-Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.385-393
    • /
    • 2009
  • Different types magnesium hydroxide groups have been obtained using the hydrothermal precipitation technique from magnesium sulfate and calcium carbonate solution. The Mg atom coordinated around O atom of ${SO_4}^{2-}$ in another layer to form a multi-layer structure crystal. The influence of synthesis parameters on the morphological characteristics and size of magnesium hydroxide groups precipitated in aqueous were investigated such as different of additive and pH. Magnesium hydroxide groups were decomposed gradually and converted finally to MgO particles after heated in air temperature up to $1050^{\circ}C$. The particle size and it's distribution morphology, crystal phase and thermal behavior of the samples were characterized through XRD, SEM, EDS, and TG/DTA.

Flame retard finishing of Cotton fabric with Phosphorous compounds

  • Park, Hui-Mun;Kim, Jin-Su;Kim, Tae-Gyeong
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2008.04a
    • /
    • pp.190-191
    • /
    • 2008
  • In the presence of heat and oxygen, phosphorous compounds decompose to form water vapor and phosphorous oxides. The phosphorous oxides subsequently reat with the polymer matrix and dehydrate it, reforming phosphoric acids. These acids again decompose to reform water vapor and phosphorous oxides. Ultimately as the water available from normal combustion of hydrocarbons diminishes, the phosphorous oxide reat with hydrocarbon fragments to produce a very high melting point char at the interface between the polymer and the heat material. The chars, which contain phosphorous, rapidly dissipate heat energy and lose their glow. This antiglow property of phosphorous compound contributes to its availability as a flame retardant. In this study, the acrylated phosphorous compounds will be prepared and demonstrated as flame retardants.

  • PDF

Preparation and Properties of Fireproofing Polyolefin Compound Using Nano Clay (Nano Clay를 이용한 난연성 Polyolefin Compound의 제조 및 특성에 관한 연구)

  • Kang, Doo-Whan;Huh, June
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.165-172
    • /
    • 2003
  • Fireproofing polyolefin nanocomposite for the application of power distributing panel was prepared by compounding linear low density polyethylene(LLDPE), decabromodiphenyl oxide (DBDPO), $Sb_2O_3$ as flame retardant agents, and modified nano clay as filler. The optimized formulation ratio of compounds to prepare the fireproofing polyolefin nanocomposite was obtained. The flame retardant properties for nanocomposite prepared by compounding 22.5 phr of nano clay and 18 phr of DBDPO based on 100 phr of LLDPE were shown that the combustion time. 10${\sim}$18 s, combustion distance, 12${\sim}$15 mm and non-melt dropping characteristics. In particular. the content of DBDPO in nanocomposite could be decreased to 18 phr from 40 phr DBDPO for fireproofing composite containing 30 phr of clay. The electrical properties measured from tracking test, had an excellent antitracking properties by not showing the phenomenon of leakage current and sparking.

Flame Retardancy and Mechanical Property of Recycled Polyolefinic Plastic Composites with Hybrid fillers (폴리올레핀계 폐플라스틱/복합filler 성형체의 난연성 및 기계적 물성 연구)

  • 강영구;송종혁
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.56-63
    • /
    • 2003
  • Flame retardancy and mechanical properties of recycled polyolefinic plastics/inorganic filler composite systems were investigated by using several inorganic flame retardants such as magnesium hydroxide and slag powder generated electro arc furnace Compatibilizer user each maleic anhydride functionalized polyethylene (PE-g-MAH) and polypropylene(PP-g-MAH) or used mixture of these. The effect of polymeric compatibilizers on the properties of composites was studied by tensile and impact test, differential scanning calorimetry, in the changed fracture mechanism. The improved adhesion was particularly reflected in the mechanical properties. The flame retardancy of composites was examined by measuring limiting oxygen index(LOI, ASTM D2863), smoke density(ASTM D2843) and vertical burning test(UL94). Regarding the flame retardant effect, the EAF slag powder is behaving as synergists as they are only active in the presence of magnesium hydroxide.

A Study on Fire Resistance of Abaca/Vinyl-ester Composites (마닐라 삼/비닐에스터 복합재료의 내화성 연구)

  • Lee, Dong-Woo;Park, Byung-Jin;Song, Jung-Il
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.59-64
    • /
    • 2017
  • Eco-convivial composites with improved properties are essential to present polymer scenario and can be made easily by replacing partially/completely renewable materials either matrix or reinforcement along with few % of additives. In these investigations, Abaca fabric have been used as reinforcement for manufacturing of Vinyl ester composites through VARTM technique and study the effect of alkali surface treatment of abaca fabric and flame retardant additives i.e., ammonium polyphosphate (APP) with halloysite nano-clay (HNT) on mechanical and flame retardant properties. The results concluded that, surface treatment deceased the hydrophilic nature of fabric and enhanced the interfacial bonding with hydrophobic matrix and eventually increased mechanical properties slightly of developed composites. Similarly, the flame retardancy of the composites improved significantly and increases the burning time by varying the wt% of filler concentration.

A Review of Flame Retarding Polyacrylonitrile (PAN) Fibers and Composites (난연성 폴리아크릴로니트릴 고분자 섬유 및 복합소재 연구 동향)

  • Kim, Jongho;Ku, Bon-Cheol
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.342-348
    • /
    • 2019
  • Development of flame retarding polymer based materials has been studied actively due to the increase in use of polymers. The post treatment of manufactured fibers or the introduction of flame retardant into fibers is representative method for the way to improve the flame retardancy. Among the polymers, polyacrylonitrile (PAN), which is a precursor of carbon fiber, has been widely used for clothes. Due to low flame retardancy of PAN fiber (LOI value: 17~18%), the improvement of flame retardancy of PAN fiber is needed. In this review paper, we report preparation methods for the fabrication of post-treated (oxidization or chemical reaction) flame-retarding PAN fibers and composites composed of PAN and organic/inorganic materials (SiO2, 2D materials or CNT).

Flame Retardancy and Mechanical Property of Polypropylene/ Nylon Nanocomposite Reinforced with Montmorillonite (몬모릴로나이트로 강화된 폴리프로필렌/ 나일론 나노복합재료의 난연특성 및 기계적 특성)

  • 이종훈;박호식;안인구;이윤희;김연수;이영관;남재도
    • Polymer(Korea)
    • /
    • v.27 no.6
    • /
    • pp.576-582
    • /
    • 2003
  • When the halogenated flame retardant, decabromodiphenyl oxide, was added to the polypropylene/nylon blend, and was compounded with montmorillonite and compatibilizer, maleic anhydride polypropylene, the improvement of flame retardancy and mechanical properties was investigated. The degree of dispersion between polymer resin and inorganic nanoparticles was investigated, and the flame retardancy and mechanical properties was measured quantitatively. XRD results showed that the montrnorillonite was com-pletely exfoliated after polypropylen/nylon nanocomposites was mixed above twice. By compounding with montmorillonite, polypropylene/nylon blend system was overcome the deterioration of flame retardancy. The tensile strength and impact strength were slightly increased, and by compounding with montmorillonite, the additional increase in mechanical properties was obtained. Therefore, the flame retardancy of polypropylene / nylon blend was decreased by adding nylon, but by compounding with inorganic nanoparticle, improvement of the flame retardancy and mechanical properties was obtained.

Foaming Properties and Flame Retardancy of the Foams Based on NBR/GTR Compounds (니트릴고무/타이어고무분말(GTR)를 이용한 발포체의 발포 및 난연 특성에 관한 연구)

  • Moon, Sung-Chul;Jo, Byung-Wook;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.37 no.3
    • /
    • pp.159-169
    • /
    • 2002
  • The improvement of flame retardancy of the foams based on NBR/GTR compounds was conducted by formulating various materials i.e. NBR, GTR, inorganic and phosphorus containing flame retardants, foaming agent, cross-linking agent and activator. The foaming properties, morphology, smoke density and flame retardancy of the specimens were investigated using SEM, LOI tester, smoke density control system and cone calorimeter. The phosphorus containing flame retardant reduces heat release rate, increases the limiting oxygen index and a char formation. The inorganic flame retardant increases the limiting oxygen index and reduces heat release rate with an increased CO yield by char formation, and smoke suppressing effect. The formed char seemed to intercept the oxygen transport and heat transfer into the core area. When the composition ratios of the compounds of NBR/GTR were $100{\sim}80/0{\sim}20 wt.%$, and the ratios of the rubbers/flame retardants were $1/1.55{\sim}3.60 wt.%$, we could developed foams with low heat release rate, high limiting oxygen index($28.0{\sim}39.3$), closed or semi-closed cell of uniformity and reasonable expandability($225{\sim}250 %$).

Thermal Properties and Microencapsulation of a Phosphate Flame Retardant with a Epoxy Resin (에폭시 수지를 이용한 인계 난연제의 마이크로캡슐화 및 열적 특성 연구)

  • Baek Kyung-Hyun;Lee Jun-Young;Hong Sang-Hyun;Kim Jung-Hyun
    • Polymer(Korea)
    • /
    • v.28 no.5
    • /
    • pp.404-411
    • /
    • 2004
  • The microcapsules containing triphenyl phosphate (TPP), a flame retardant, were prepared by phase-inversion emulsification technique using the epoxy resin (Novolac type) with excellent physical properties and network structure. This microencapsulation process was adopted for the protection of TPP evaporation and wetting of polymer composite during the polymer blend processing. The TPP, epoxy resin and mixed surfactants were emulsified to oil in water (O/W) by the phase inversion technology and then conducted on the crosslinking of epoxy resin by in-situ polymerization. The capsule size and size distribution of TPP capsules was controlled by mixed surfactant ratio, concentration and TPP contents, The formation and thermal property of TPP capsules were measured by differential scanning calorimetry and thermogravimetric analysis. The morphology and size of TPP capsules were also investigated by scanning and transmission electron microscopies. As the surfactant concentration increased, the TPP capsules were more spherical and mono-dispersed at the same weight ratio of mixed surfactants (F127: SDBS).

Studies on the Stabilization of Rayon Fabrics for Preparing Carbon Fabrics: 2. Fast Isothermal Stabilization Processes at High Temperature

  • Yoon, Sung-Bong;Cho, Chae-Wook;Cho, Dong-Hwan;Park, Jong-Kyoo;Lee, Jae-Yeol
    • Carbon letters
    • /
    • v.9 no.4
    • /
    • pp.308-315
    • /
    • 2008
  • In the present study, fast isothermal stabilization processes for rayon precursor fabrics were performed at $350^{\circ}C$ and $400^{\circ}C$ within 3 minutes and the chemical and physical characteristics of the stabilized fabrics were investigated. In addition, rayon precursor fabrics were pre-treated with three different phosphorous-based flame retardants and then stabilized. The effect of flame retardants on the chemical composition, thermal shrinkage, weight change, thermal stability and XRD results was examined, comparing with those of the precursor fabrics. The result showed that the stabilization of rayon fabrics was most effective as the stabilization temperature was $350^{\circ}C$, the stabilization time was 3 min, and the pre-treatment with phosphoric acid of 1 vol%. The carbon contents of stabilized rayon fabrics were increased with increasing stabilization temperature and time, whereas the oxygen contents were decreased. Also, it is likely that the pre-treatment with phosphoric acid plays a role in retarding the change of chemical structure of rayon fabric. The XRD result was quite consistent with the result showing the effect of phosphoric acid on the chemical composition, thermal shrinkage and weight reduction of rayon fabric.