• Title/Summary/Keyword: Flame propagation time

Search Result 76, Processing Time 0.026 seconds

Analysis of Fire Patterns of Flammable Liquids for Oil Flow Tests of Compartment Fires with Reduced Simulation (축소 모의된 구획 화재의 흘림 실험에 대한 인화성 액체의 화재 패턴 해석)

  • Joe, Hi-Su;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.28 no.3
    • /
    • pp.43-48
    • /
    • 2014
  • The purpose of this study is to analyze the flame propagation speed, radiation range, diffusion pattern and combustion completion time of a fire by filling a divided space with single combustible substance. It was found that the flame propagation speed was the fastest (0.2 s) for kerosene and the lowest (82.1 s) for alcohol. In the case of paint thinner, it took 19.0 s for the flame to reach its peak at the fastest speed after ignition while in the case of alcohol, it took 138.6 s for the flame to reach its peak at the lowest speed. In the case of the combustion of 200 ml of flammable liquids, the combustion completion time was 79.9 s for paint thinner, which is the shortest, 135 s for gasoline, 170 s for kerosene, 231.4 s for diesel and 337.0 s for alcohol. In addition, when flammable liquids are combusted, the lower part of the flame is governed by laminar flow pattern and the upper part of the flame showed turbulence pattern. In the case of a test performed for bean oil, it could be seen that if the fire source was removed, the flame was automatically extinguished without further combustion and that white smoke was generated due to incomplete combustion.

An Experimental Study on the Bed Combustion Phenomena in MSW(Municipal Solid Waste) Incinerator (폐기물 소각로 베드에서의 연소현상 관찰을 위한 실험적 연구)

  • Min, Jee Hyun;Shin, Donghoon;Choi, Sangmin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.159-165
    • /
    • 1999
  • Experimental studies have been performed to observe the basic phenomena of waste bed combustion in MSW incinerator. A reduced scale apparatus was utilized to simulate the combustion behavior in real plant with 1-dimensional transient behavior at the experimental setup, which uses wet cubic wood with ash content as simulated waste. LHV (lower heating value) of solid fuel, fuel particle size and flow rate of combustion air were taken as important parameters of the bed combustion. For the quantitative analysis, FPR (flame propagation rate), TBT (total burn-out time) and PBT (particle burn-out time) was defined. LHV represent the capability of heat release of the fuel, so that a higher LHV results in faster reaction rate of the fuel bed, which is shown by higher FPR. Fuel particle size is related with surface area per unit mass as well as heat and mass transfer coefficient. As the particle size increases the FPR decreases owing to decreasing specific surface area. Air injection supplies oxygen to the reaction zone. However oversupply of combustion air increases convection cooling of the bed and possibly extinguishes the flame.

A Study on Blend Effect of Fuel in Flame Spread Along An One-Dimensional Droplet Array (일차원 액적 배열의 화염 퍼짐에 있어서 연료의 혼합 효과에 관한 연구)

  • Park, Jeong;Kobayashi, Hideaki;Niioka, Takashi
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.2
    • /
    • pp.1-11
    • /
    • 1998
  • Experimental investigation on flame spread of blended fuel droplet arrays has been conducted for droplet diameters of 1.0mm and 0.75mm using high-speed chemiluminescence images of OH radical. The flame spread rate is measured with blended fuel composition, droplet diameter, and droplet spacing. Flame spread is categorized into two: a continuous mode and an intermittent one. There exist a limit droplet spacing, above which flame does not spread, and a droplet spacing of maximum flame spread, which is closely related to flame diameter. It is seen that flame spread rate is mainly dependent upon the relative position of flame zone within a droplet spacing. In case of large droplet, the increase of % volume of Heptane induces the shift of limit droplet spacing to a larger spacing since volatile Heptane plays a role of an enhancer of flame spread rate. In case of small droplet, the increase of % volume of Heptane leads to the shift of limit droplet spacing to a smaller droplet spacing. This is so because of the delayed chemical reaction time by the rapid increase of mass flux of fuel vapor for small droplet.

  • PDF

Explosion Characteristics and Flame Velocity of Suspended Plastic Powders (플라스틱 부유 분진의 폭발특성과 화염전파속도)

  • Han, Ou Sup;Lee, Keun Won
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.367-373
    • /
    • 2016
  • Many of plastic powders handled in industry are combustible and have the hazard of dust fire and explosion accidents. However poor information about the safe handling has been presented in the production works. The aim of this research is investigated experimentally on explosive characteristics of various plastic powders used in industry and to provide additional data with safety informations. The explosibility parameters investigated using standard dust explosibility test equipment of Siwek 20-L explosion chamber. As the results, the dust explosion index ($K_{st}$) of ABS ($209.8{\mu}m$), PE ($81.8{\mu}m$), PBT ($21.3{\mu}m$), MBS ($26.7{\mu}m$) and PMMA ($14.3{\mu}m$) are 62.4, 59.4, 70.3, 303 and 203.6[$bar{\cdot}m/s$], respectively. And flame propagation velocity during plastic dust explosions for prediction of explosive damage was estimated using a flame propagation model based on the time to peak pressure and flame arrival time in dust explosion pressure assuming the constant burning velocity.

탄화수소/산소 혼합기체가 채워진 관 내부를 전파하는 데토네이션 파의 해석과 가시화

  • Choe Jeong Yeol
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.04a
    • /
    • pp.29-36
    • /
    • 2004
  • A numerical study is carried out on the detonation wave propagation through a T-shaped flame tube, which represents a crucial part of the combustion wave ignition (CWI) system aimed for simultaneous ignition of multiple combustion chambers by delivering detonation waves. The formulation includes the Euler equations and an induction-parameter model. The reaction rate is treated based on a chemical kinetics database obtained from a detailed chemistry mechanism. A second-order implicit time integration and a third-order TVD algorithm are Implemented to solve the theoretical model numerically. A total of more than two-million grid points are used to provide direct insight into the dynamics of the detonation wave. Several important phenomena including detonation wave propagation, degeneration, and re-initiation are carefully examined. Information obtained can be effectively used to facilitate the design and optimization of the flame tubes of CWI systems.

  • PDF

An Experimental Study on Flame Spread in an One-Dimensional Droplet Array (일차원 액적 배열하에서 화염 퍼짐에 관한 실험적 연구)

  • Park, Jeong;Shin, Hyun Dong;Kobayashi, Hideaki;Niioka, Takashi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.131-139
    • /
    • 1999
  • Experimental investigations on flame spread in droplet arrays have been conducted under supercritical ambient pressures of fuel droplet. Flame spread rates are measured for n-Decane droplet of diameters of 0.75 and 1.0mm, using high speed images of OH chemiluminescence up to 3.0MPa. The pattern of flame spread is categorized into two: a continuous mode and an intermittent one. There exists a limit droplet spacing, above which flame spread does not occur. Flame spread rate with the decrease of droplet spacing increases and then decreases after takin& a maximum. It is also seen that there exists a limit ambient pressure, above which flame spread does not occur. Flame spread rate decreases monotonically with the increase of ambient pressure. Exceptionally, In the case of a small droplet spacing, flame spread with the increase of ambient pressure is extended to supercritical pressures of fuel droplet. This is caused by enhanced vaporization with the increase of ambient pressure. Consequently, in flame spread with droplet droplet spacing, the relative position of flame to droplet spacing plays an important role. The monotonic decrease with ambient pressure is mainly related to the reduction of flame radius in subcritical pressures and the extension to supercritical pressures of flame spread is caused by the reduction of ignition time of unburnt droplet due to the enhanced vaporization at supercritical pressures.

Development of Ignitor of Open-Type Propulsion Device for Korean Interceptor (대응탄 개방형 추진장치용 점화기개발)

  • Kwon, Soon-Kil;Kim, Chang-Kee;Yun, Sang-Yong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1166-1170
    • /
    • 2011
  • For developing the ignition device for the interceptor of Korean active protection system, the design parameters of the ignition device which should have a short ignition delay time and sufficient energy for propellant ignition were studied. The electric primer instead of mechanical primer was adopted for deceasing delay time, and ignition code was used for decreasing the time difference of flame propagation from the flame holes. The developed ignition device showed the ignition delay time of a few ms. When the designed ignition device was applied to the open-type propulsion devices, the stable interior ballistic characteristic was showed in a firing test.

Experimental Investigations on Explosion Characteristics of LPG/Air Mixture by Electrostatic Discharge Energies (정전기 방전에너지에 따른 LPG/공기 혼합물의 폭발특성에 관한 실험적 연구)

  • Kim, Nam-Suk;Park, Dal-Jae
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.6
    • /
    • pp.26-30
    • /
    • 2011
  • Experimental investigations were performed to examine the effects of different electrostatic discharge ignition energies on LPG/air mixture explosions in an explosion chamber. The chamber consisted of 500 mm in length, with a $100{\times}100mm^2$ cross section. Three different ignition energies were used: 0.30 mJ, 46 mJ and 98 mJ. Flame propagations were recorded by a high speed video camera. The results of flame speed and pressure obtained from the different ignition energies were discussed. It was found that as the energy increased, different flame initiations occurred. This caused the time interval in both the flame and pressure developments. It was also found that the flame speed and the pressure were less sensitive to both 0.30 mJ and 46 mJ, except for the ignition energy of 98 mJ.

Flame Diagnosis Using Neuro-Fuzzy Learning Algorithm (뉴로퍼지학습 알고리듬을 이용한 연소상태진단)

  • Lee, Tae-Yeong;Kim, Seong-Hwan;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.587-595
    • /
    • 2002
  • Recent trend changes a criterion for evaluation of humors that environmental problems are raised as a global issue. Burners with higher thermal efficiency and lower oxygen in the exhaust gas, evaluated better. To comply with environmental regulations, burners must satisfy the NO/sub x/ and CO regulation. Consequently, 'good burner'means one whose thermal efficiency is high under the constraint of NO/sub x/ and CO consistency. To make existing burner satisfy recent criterion, it is highly recommended to develop a feedback control scheme whose output is the consistency of NO/sub x/ and CO. This paper describes the development of a real time flame diagnosis technique that evaluate and diagnose the combustion states, such as consistency of components in exhaust gas, stability of flame in the quantitative sense. In this paper, it was proposed on the flame diagnosis technique of burner using Neuro-Fuzzy algorithm. This study focuses on the relation of the color of the flame and the state of combustion. Neuro-Fuzzy loaming algorithm is used in obtaining the fuzzy membership function and rules. Using the constructed inference algorithm, the amount of NO/sub x/ and CO of the combustion gas was successfully inferred.

An Experimental Study on the Flame Characteristics of the Air/$C_3$$H_8$ Premixed Flame Using Large Axial Mean Velocity Variation (급격한 평균유속 변동에 의한 관내 Air/$C_3$$H_8$ 예혼합 화염의 소화특성에 관한 실험적 연구)

  • Kim, Nam-Il;Lee, Eun-Do;Sin, Hyeon-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.540-545
    • /
    • 2001
  • Many previous researches on the premixed flame in a tube have treated the unsteady flame behaviors in which the shape, position and intensity of the flame varied, but more detail and fundamental research has been necessary. The flame stabilization condition in a tube, a unique steady state, and the unsteady behaviors, using the stabilization condition as an initial condition, were carried out in recent years. In this paper, propane-air premixed flame was stabilized in a tube and the flame behavior was observed when the mean velocity variation was imposed into the opposite direction of the initial mean velocity. The velocity variation is larger than the burning velocity and longer than the reaction time scale. During the period of the velocity variation flame is not extinguished. But after the period of the mean velocity variation the flame could be re-stabilized or be extinguished depending on the experimental conditions: equivalence ratio, period of velocity variation and magnitude of velocity variation. The extinction mechanisms were classified into the two cases, one is caused by the flame stretch in the shear layer near the wall, and the other is caused by the vortices and vortexes, which are generted by the acoustic waves.