DOI QR코드

DOI QR Code

플라스틱 부유 분진의 폭발특성과 화염전파속도

Explosion Characteristics and Flame Velocity of Suspended Plastic Powders

  • 한우섭 (한국산업안전보건공단 산업안전보건연구원) ;
  • 이근원 (한국산업안전보건공단 산업안전보건연구원)
  • Han, Ou Sup (Occupational Safety & Health Research Institute) ;
  • Lee, Keun Won (Occupational Safety & Health Research Institute)
  • 투고 : 2016.03.02
  • 심사 : 2016.04.01
  • 발행 : 2016.06.01

초록

산업분야에서 사용되는 플라스틱 분진은 대부분 가연성이며 화재폭발사고 위험성이 있다. 그러나 산업현장에서 안전한 취급을 위해 활용할 수 있는 폭발특성 자료는 매우 적다. 본 연구에서는 사업장에서 취급하는 다양한 플라스틱 분진 의 폭발특성을 실험적으로 조사하여 관련 자료와 안전정보를 제공하는 것을 목적으로 수행하였다. 이를 위해 20 L 분진폭발시험장치를 사용하여 각종 폭발특성값을 측정하였다. 그 결과 ABS ($209.8{\mu}m$), PE ($81.8{\mu}m$), PBT ($21.3{\mu}m$), MBS ($26.7{\mu}m$) 및 PMMA ($14.3{\mu}m$)시료의 분진폭발지수($K_{st}$)는 각각 62.4, 59.4, 70.3, 303, 203.6[$bar{\cdot}m/s$]의 값이 얻어졌다. 또한 플라스틱 분진폭발에 의한 피해예측을 위하여 분진폭발압력에서 분진의 연소속도가 일정하다고 가정하고 최대압력소요시간 및 화염도달시간을 고려한 화염전파속도모델을 통하여 분진폭발시의 화염전파속도를 추정하였다.

Many of plastic powders handled in industry are combustible and have the hazard of dust fire and explosion accidents. However poor information about the safe handling has been presented in the production works. The aim of this research is investigated experimentally on explosive characteristics of various plastic powders used in industry and to provide additional data with safety informations. The explosibility parameters investigated using standard dust explosibility test equipment of Siwek 20-L explosion chamber. As the results, the dust explosion index ($K_{st}$) of ABS ($209.8{\mu}m$), PE ($81.8{\mu}m$), PBT ($21.3{\mu}m$), MBS ($26.7{\mu}m$) and PMMA ($14.3{\mu}m$) are 62.4, 59.4, 70.3, 303 and 203.6[$bar{\cdot}m/s$], respectively. And flame propagation velocity during plastic dust explosions for prediction of explosive damage was estimated using a flame propagation model based on the time to peak pressure and flame arrival time in dust explosion pressure assuming the constant burning velocity.

키워드

참고문헌

  1. Database for Major Industrial Accidents, Korea Occupational Safety and Health Agency(1988-2015).
  2. Kao, C.-S. and Duh, Y.-S., "Accident Investigation of an ABS Plant," J. Loss Prev. Process Ind., 15(3), 223-232(2002). https://doi.org/10.1016/S0950-4230(01)00068-7
  3. Eckhoff, R. K., Dust Explosions in the Process Industries (3rd ed.), Amsterdam: Gulf Professional Publishing(2003).
  4. Genserik Reniers and Valerio Cozzani, Domino Effects in the Process Industries: Modelling, Prevention and Managing, Elsevier(2013).
  5. CSB, Final Report on West Pharmaceutical Dust Explosion Accident, The U.S. Chemical Safety Board(2004).
  6. Wei Gaoa, Jianliang Yua, Xinyan Zhanga, Jian Lia, Bing Wang, "Characteristics of Vented Nano-polymethyl Methacrylate Dust Explosions," Powder Technology, 283, 406-414(2015). https://doi.org/10.1016/j.powtec.2015.06.011
  7. Hertzberg, M., Zlochower, I. A. and Cashdollar, K. L., "Volatility Model for Coal Dust Flame Propagation and Extinguishment," 21st International Symposium on Combustion, The Combustion Institute, 325-333(1988).
  8. Cashdollar, K. L., Hertzberg, M. and Zlochower, I. A., "Effect of Volatility on Dust Flammability Limits for Coals, Gilsonite and Polyethylene," 22st International Symposium on Combustion, The Combustion Institute, 1757-1765(1989).
  9. Cashdollar, K. L., "Overview of Dust Explosibility Characteristics," J. Loss Prev. Process Ind., 13(3), 183-199(2000). https://doi.org/10.1016/S0950-4230(99)00039-X
  10. Duh, Y.-S., Ho, T.-C., Chen, J.-R. and Kao, C.-S., "Study on Exothermic Oxidation of Acrylonitrile-butadienestyrene (ABS) Resin Powder with Application to ABS Processing Safety," Polymers, 2(3), 174-187(2010). https://doi.org/10.3390/polym2030174
  11. Horton, M. D., Goodson, F. P. and Smoot, L. D., "Characteristics of Flat, Laminar Coal Dust Flames," Combustion and Flame, 28, 187-195(1977). https://doi.org/10.1016/0010-2180(77)90024-4
  12. Proust, C. and Veyssiere, B., "Fundamental Properties of Flames Propagating in Starch Dust-air Mixtures," Combustion Science and Technology, 62, 149-172(1988). https://doi.org/10.1080/00102208808924007
  13. Mazurkiewicz, J. and Jarosinski, J., "Investigation of a Laminar Cornstarch Dust-air Flame Front," Proceedings of the 6th International Colloquium on Dust Explosions, Shenyang: Northeastern University Press, 179-185(1994).
  14. Glinka, W., Wang, X., Wolanski, P. and Xie, L., "Velocity and Structure of Laminar Dust Flames," Proceedings of the 7th International Colloquium on Dust Explosions, Bergen, Norway, 61-68(1996).
  15. Krause, U., Kasch, T. and Gebauer, B., "Velocity and Concentration Effects on the Laminar Burning Velocity of Dust-air Mixtures," Proceedings of the 7th International Colloquium on Dust Explosions, Bergen, Norway, 51-54(1996).
  16. Han, O. S., Yashima, M., Matsuda, T., Matsui, H., Miyake, A. and Ogawa, T., "Behaviour of Flames Propagating through Lycopodium Dust Clouds in a Vertical Duct," J. Loss Prev. Process Ind., 13, 449-457(2000). https://doi.org/10.1016/S0950-4230(99)00072-8
  17. Dahoe, A. E. and de Goey, L. P. H., "On the Determination of the Laminar Burning Velocity from Closed Vessel Gas Explosions," J. Loss Prev. in the Process Ind., 16, 457-478(2003). https://doi.org/10.1016/S0950-4230(03)00073-1
  18. Proust, C., "Flame Propagation and Combustion in some Dust-air Mixture," J. Loss Prev. Process Ind., 19, 89-100(2006). https://doi.org/10.1016/j.jlp.2005.06.026
  19. Han, O. S., Han, I. S. and Choi, Y. R., "Flame Propagation Characteristics Through Suspended Combustible Particles in a Full-Scaled Duct," Korean Chem. Eng. Res., 47(5), 572-579(2009).
  20. Lewis, B. and von Elbe, G., Combustion, Flames and Explosions of Gases (3rd ed.), Orlando, FL: Academic Press (1987).
  21. Veynante, D. and Vervisch, L., "Turbulent Combustion Modelling," Progress in Energy and Combustion Science, 28, 193-266 (2002). https://doi.org/10.1016/S0360-1285(01)00017-X
  22. Tezok, F. I., Kauffman, C. W., Sichel, M. and Nichols, J. A., "Turbulent Burning Velocity Measurements for Dust-air Mixtures in a Constant Volume Spherical Bomb," Progress in Astronautics and Aeronautics, 105, 184-195(1986).
  23. Van der and Wel, P., Ignition and Propagation of Dust Explosions, Delft Univ. Press, Netherlands(1993).
  24. Dahoe, A. E., Zevenbergen, J. F., Lemkowitz, S. M. and Scarlett, B., "Dust Explosions in Spherical Vessels: The Role of Flame Thickness in the Validity of the Cube-root Law," J. Loss Prev. in the Process Ind., 9, 33-44(1996). https://doi.org/10.1016/0950-4230(95)00054-2
  25. Han, O. S., Han, I. S. and Choi, Y. R., "Prediction of Flame Propagation Velocity Based on the Behavior of Dust Particles," Korean Chem. Eng. Res., 47(6), 705-709(2009).
  26. Han, O. S., Han, I. S., Choi, Y. R. and Lee, K. W., "Explosion Properties and Thermal Stability of Reactive Organic Dust," KIGAS, 15(4), 7-14(2011).
  27. ASTM E1226, Standard Test Method for Pressure and Rate of Pressure Rise for Combustible Dusts, The American Society for Testing and Materials(1988).
  28. Bartknecht, W., Dust-Explosions, Course, Prevention, Protection, Springer-Verlag Berlin, Heidelberg, New York(1989).
  29. Wu, H.-C., Ou, H.-J., Hsiao, H.-C. and Shih, T.-S., "Explosion Characteristics of Aluminum Nanopowders," Aerosol and Air Quality Research, 10, 38-42(2010).

피인용 문헌

  1. 원료의약품 분진의 폭발 위험성 평가 vol.55, pp.5, 2016, https://doi.org/10.9713/kcer.2017.55.5.600
  2. 식료품 분진의 발화 및 폭발 위험성 vol.55, pp.5, 2017, https://doi.org/10.9713/kcer.2017.55.5.629
  3. 참깻묵의 자연발화온도와 활성화 에너지를 통한 화재 및 폭발의 위험성 평가 vol.59, pp.2, 2016, https://doi.org/10.9713/kcer.2021.59.2.225