• Title/Summary/Keyword: Flame Sensor

Search Result 87, Processing Time 0.024 seconds

A Study on the Smart Fire Detection System using the Wireless Communication (무선통신을 이용한 스마트 화재감지 시스템에 관한 연구)

  • Chung, Byoung-Chan;Na, Wonshik
    • Journal of Convergence Society for SMB
    • /
    • v.6 no.3
    • /
    • pp.37-41
    • /
    • 2016
  • In this paper, we propose a fire alarm system that utilizes Wi-Fi to alarm multiple people at once. This system, based on Arduino, uses smoke, flame and temperature sensor units to sense fire and send detection data to a server via wireless communication system. The server uses stored data to relay current fire situations gathered from nearby sensors to smartphones. It also automatically reports the fire using location data from sensors. Using this system, we were able to retrieve fire alarm from sensors via push notification of our smartphone. We also confirmed the establishment of linkage with sensors and automatic report of fire via SMS. From this result, the possibility of sending real-time notifications via the Internet toward nearby smartphones about disasters such as conflagration has been proven to be feasible.

A Study on the Material Characteristics of the NiO/ZnO Ultraviolet Sensor Based on Solution Process (용액 공정 기반 NiO/ZnO계 자외선 센서용 재료 특성 연구)

  • Moon, Seong-Cheol;Lee, Ji-Seon;No, Kyeong-Jae;Yang, Seong-Ju;Lee, Seong-Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.8
    • /
    • pp.508-513
    • /
    • 2017
  • Ultraviolet (UV) photodetectors are used in various industries and fields of research, including optical communication, flame sensing, missile plume detection, astronomical studies, biological sensors, and environmental research. However, general UV detectors that employ Schottky junction diodes and p-n junctions have high fabrication cost and low quantum efficiency. In this study, we investigated the characteristics of materials used to manufacture UV photodetectors in a low-cost solution process that requires easy fabrication of flexible substrates. We fabricated p-type NiO and n-type ZnO substrates with wide band gap by the sol-gel method and compared the characteristics of substrates prepared under different spin-coating and heat-treatment conditions.

Design and Fabrication of a Low Frequency Vibration Driven High-Efficiency Electromagnetic Energy Harvester (저 주파수용 FR-4 스프링 기반 고효율 진동형 전자기식 에너지 하베스터의 설계 및 제작)

  • Lee, Byung-Chul;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.298-302
    • /
    • 2012
  • This paper describes the design and fabrication of a low frequency vibration driven high-efficiency electromagnetic energy harvester based on FR(Flame Resistance)-4 spring which converts mechanical energy into useful electrical power. The fabricated generator consists of a vertically polarized NdFeB permanent magnet attached to the center of spring and a planar type copper coil which has higher efficiency compare with cylindrical type coil. ANSYS finite analysis and Matlab were used to determine the resonance frequency and output power. The generator is capable of producing up to 1.36 $V_{pp}$ at 9 Hz, which has the maximum power of 639 ${\mu}W$ with a load resistance of $3.25k{\Omega}$.

An Intelligent Fire Detection Algorithm for Fire Detector

  • Hong, Sung-Ho;Choi, Moon-Su
    • International Journal of Safety
    • /
    • v.11 no.1
    • /
    • pp.6-10
    • /
    • 2012
  • This paper presents a study on the analysis for reducing the number of false alarms in fire detection system. In order to intelligent algorithm fuzzy logic is adopted in developing fire detection system to reduce false alarm. The intelligent fire detection algorithm compared and analyzed the fire and non-fire signatures measured in circuits simulating flame fire and smoldering fire. The algorithm has input variables obtained by fire experiment with K-type thermocouple and optical smoke sensor. Also triangular membership function is used for inference rules. And the antecedent part of inference rules consists of temperature and smoke density, and the consequent part consists of fire probability. A fire-experiment is conducted with paper, plastic, and n-heptane to simulate actual fire situation. The results show that the intelligent fire detection algorithm suggested in this study can more effectively discriminate signatures between fire and similar fire.

Development of an Indoor Networked Security Robot System (네트워크 기반 실내 감시 로봇 시스템 개발)

  • Park, Keun Young;Heo, Guen Sub;Lee, Sang Ryong;Lee, Choon Young
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.3
    • /
    • pp.136-142
    • /
    • 2008
  • Mobile robots can offer services like intelligent monitoring in an indoor environment using network connection with remote users. In this paper, we designed and developed a networked security robot system with various sensors, such as flame detector, gas detector, sound monitoring module, and temperature sensor, etc. The robot can be accessed through a web service and the user can check the status of the environment. Using ADAMS software, we defined the motor specification for a worst-case condition of climbing over a obstacle. We applied the robot system in monitoring office condition.

  • PDF

Design of Automatic Fire Prevention and Suppression System for Photovoltaic Connection Module (태양광 접속반의 자동 화재 예방 및 진압 시스템 설계)

  • Lee, Kang Won;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.33-38
    • /
    • 2022
  • A solar power generation system uses a solar module that collects solar radiation energy, a connecting board that collects DC power generated from the solar module, and a diode to prevent reverse current from flowing from an inverter to the solar module. The existing photovoltaic connection module consists of only fuses and diodes for reverse polarity and overcurrent blocking, and does not have fire diagnosis, prevention, and suppression functions in the event of a fire. To solve this problem, this paper presents a method to monitor the internal state of the photovoltaic connection module using several sensors and to prevent and extinguish a fire using solenoid valves and fire extinguishing agents when a fire is detected. Through the experiment, it was confirmed that the proposed method normally suppresses the fire in event of a fire.

Thermal Image Real-time estimation and Fire Alarm by using a CCD Camera (CCD 카메라를 이용한 열화상 실시간 추정과 화재경보)

  • Baek, Dong-Hyun
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.92-98
    • /
    • 2016
  • This study evaluated thermal image real-time estimation and fire alarm using by a CCD camera, which has been a seamless feature-point analysis method, according to the angle and position and image fusion by a vector coordinate point set-up of equal shape. The system has higher accuracy, fixing data value of temperature sensing and fire image of 0~255, and sensor output-value of 0~5,000. The operation time of a flame specimen within 500 m, 1000 m, and 1500 m from the test report specimen took 7 s, 26 s, and 62 s, respectively, and image creation was proven. A diagnosis of fire accident was designated to 3 steps: Caution/Alarm/Fire. Therefore, a series of process and the transmission of SNS were identified. A light bulb and fluorescent bulb were also tested for a false alarm test, but no false alarm occurred. The possibility that an unwanted alarm will be reduced was verified through a forecast of the fire progress or real-time estimation of a thermal image by the change in the image of a time-based flame and an analysis of the diffusion velocity.

A Study on the LPG Explosion Characteristics of Non-uniform Concentration (불균일 농도 LPG의 폭발 특성에 관한 연구)

  • 오규형
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.111-116
    • /
    • 2003
  • LPG explosion characteristics in non-uniform concentration was investigated with a 270 liter explosion vessel of which the scale is 100 cm${\times}$60 cm${\times}$45 cm. Vented explosion and closed explosion system were used. Experimental parameter were position of ignition source, nozzle diameter and flow rate of gas. Non uniform concentration was controlled by the nozzle diameter and flow rate. Explosion pressure were measured with strain type pressure sensor and the flame behavior was pictured with the video camera. Based on this experimental result, it was found that the flow rate of gas and the duration of gas injection are important factor for mixing the gas in the vessel. And as the increase the non-uniformity of gas concentration, explosion pressure and pressure rise rate Is decrease but the flame resident time in the vessel is increase. Therefore gas explosion to fire transition possibility will increase in non-uniform concentration gas explosion.

Ignition Characteristics of n-Dodecane Fuel Droplet on a Hot Surface (n-Dodecane 연료의 고온면 점화특성)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.24 no.1
    • /
    • pp.116-121
    • /
    • 2010
  • The present study has been performed to investigate the ignition characteristics of a n-dodecane fuel droplet on the hot surface. Simplified bench scale test setup was built to examine the effect of air flow on the ignition temperature of fuel droplet. IR pyrometric sensor was used to measure the surface temperature, the measured temperature using IR pyrometer was directly compared with k-type thermocouple. The ignition of n-dodecane fuel droplet was divided into two stage - cool flame and hot flame - with the air flow rate except the case of air flow rate 3.0 lpm. The ignition temperature and probability was greatly affected by the air flow rate and the MHSIT of the present study was about $300^{\circ}C$ for air flow rate of 0.5 lpm.

Image based Fire Detection using Convolutional Neural Network (CNN을 활용한 영상 기반의 화재 감지)

  • Kim, Young-Jin;Kim, Eun-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1649-1656
    • /
    • 2016
  • Performance of the existing sensor-based fire detection system is limited according to factors in the environment surrounding the sensor. A number of image-based fire detection systems were introduced in order to solve these problem. But such a system can generate a false alarm for objects similar in appearance to fire due to algorithm that directly defines the characteristics of a flame. Also fir detection systems using movement between video flames cannot operate correctly as intended in an environment in which the network is unstable. In this paper, we propose an image-based fire detection method using CNN (Convolutional Neural Network). In this method, firstly we extract fire candidate region using color information from video frame input and then detect fire using trained CNN. Also, we show that the performance is significantly improved compared to the detection rate and missing rate found in previous studies.