• Title/Summary/Keyword: Flame Propagation Rate

Search Result 92, Processing Time 0.023 seconds

A Numerical Study for the Scalar Dissipation Rate and the Flame Curvature with Flame Propagation Velocity in a Lifted Flame (부상화염에서 화염전파속도에 따른 스칼라소산율과 곡률반경에 대한 수치적 연구)

  • Ha, Ji-Soo;Kim, Tae-Kwon;Park, Jeong;Kim, Kyung-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.3
    • /
    • pp.46-52
    • /
    • 2010
  • Flame propagation velocity is the one of the main mechanism of the stabilization of triple flame. To quantity the triple flame propagation velocity, Bilger presents the triple flame propagation velocity, depending on the mixture fraction gradient, based on the laminar jet flow theory. However, in spite of these many analyses, there has not been any attempt to quantify the triple flame propagation velocity with the flame radius of curvature and scalar dissipation rate. In the present research, there was discussion about the radius of flame curvature and scalar dissipation rate, through the numerical study. As a result, we have known that the flame propagation velocity was linear with the nozzle exit velocity and scalar dissipation rate decreases nonlinearly with the flame propagation velocity and radius of curvature of flame increases linearly. Also radius of curvature of flame decreases non-linearly with the scalar dissipation rate. Therefore, we ascertained that there was corelation among the scalar dissipation rate, radius of flame curvature and flame propagation velocity.

The Characteristics of the Flame Propagation Velocity and Volume Integral of Reaction Rate with the Variation of Fuel Injection Velocity for a Liftoff Flame (부상화염에서 연료유량에 따른 화염전파속도와 체적연소반응속도의 변화 특성에 관한 연구)

  • Ha, Ji-Soo;Kim, Tae-Kwon;Park, Jeung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.466-475
    • /
    • 2009
  • A numerical analysis of reactive flow in a liftoff flame is accomplished to elucidate the characteristics of flame propagation velocity and volume integral of reaction rate with the variation of fuel injection velocity at the fuel rich region, fuel lean region and diffusion flame region. The increase of fuel injection velocity enhances flame propagation velocity, but its effect on the flame propagation velocity is not much greater under 4%. The increase of fuel injection velocity affects directly and linearly on the flame surface area in the fuel rich region and so enhances volume integral of reaction rate to accommodate the increment of fuel.

A Study on The Flame Propagation Velocity of Laminar Lifted Flame with Flame Curvatur e and Scalar Dissipation Rate (화염 곡률과 스칼라 소산율에 따른 층류부상화염의 화염전파속도에 관한 연구)

  • Kim, Kyung-Ho;Kim, Tae-Kwon;Park, Jeong;Ha, Ji-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.47-56
    • /
    • 2011
  • Flame propagation velocity is the one ofmainmechanismof the stabilization of triple flame. To quantify the triple flame propagation velocity, Bilger presents the triple flame propagation velocity depending on the mixture fraction gradient, based on the laminar jet flow theory. However, in spite of these many analyses, there was not presented any relation of these variables, triple flame propagation velocity, radius of flame curvature and scalar dissipation rate indirectly. In the present research, we have checked the results of numerical simulation with experiment and numerical analysis and verified the flame propagation velocity with a scalar dissipation rate proposed by Bilger through the numerical simulation. Also we have clarified that flame propagation velocity was depended on the radius of flame curvature and scalar dissipation rate.

The Characteristics of the Flame Propagation Velocity and Volume Integral of Reaction Rate with the Variation of Nozzle Diameter and Fuel Injection Flow Rate for a Liftoff Flame (부상화염에서 노즐직경과 연료유량에 따른 화염전파속도와 체적연소반응속도의 변화 특성에 관한 연구)

  • Ha, Ji-Soo;Kim, Tae-Kwon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.250-258
    • /
    • 2010
  • A numerical analysis of reactive flow in a liftoff flame is accomplished to elucidate the characteristics of flame propagation velocity and volume integral of reaction rate with the variation of nozzle diameter and fuel injection flow rate in a liftoff flame consisted with fuel rich region, fuel lean region and diffusion flame region. The increase of fuel injection velocity enhances flame propagation velocity for the selected three nozzle diameter(d=0.25, 0.30, 0.35mm), but its effect on the flame propagation velocity is not much greater than 4.3%. The increase of fuel flow rate is directly and linearly related with the volume reaction rate and so the volume reaction rate, not the flame propagation velocity, might be considered to accommodate the variation of fuel flow rate in a liftoff flame.

The Study on Effect of Local Schmidt Number on Lifted Flame and Its Propagation Velocity (국소 슈미트수가 부상화염 및 화염전파속도에 미치는 영향에 관한 연구)

  • Jeon, Minkyu;Lee, Min Jung;Jeong, Yong-Jin;Kim, Nam Il
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.75-76
    • /
    • 2015
  • Lifted flame stabilization mechanism can be explained with constant Schmidt number from the equation of $H^{\ast}_L/d^2_o=const{\times}v_e^{(2Sc-1)/(Sc-1)}$. In this research, a method of local Schmidt number was applied in order to measure edge flame propagation velocities, and edge flame propagation velocity was calculated from the trend between lift-off height and nozzle flow rate.

  • PDF

A Study of Correlation between Flame Propagation Velocity and Scalar Dissipation Rate for a Liftoff Flame (부상화염에서 화염전파속도와 스칼라소산율의 상호 관계에 관한 연구)

  • Ha, Ji-Soo;Kim, Tae-Kwon
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.3
    • /
    • pp.33-42
    • /
    • 2009
  • A numerical analysis of reactive flow in a liftoff flame is accomplished to elucidate the characteristics of liftoff flame. To verify reliance of numerical calculation, the liftoff heights of liftoff flame for various fuel exit velocities are compared between the existing experimental research results and the present calculation results. The flame propagation velocity is conducted at the flow redirection point which is on a stoichiometric line ahead of flame front. This point was selected constant distance from triple point regardless of fuel exit velocity at the previous research. This causes considerable errors for the flame propagation velocity and scalar dissipation rate. The main issue of the present research is to establish the resonable method to select the redirection point and so that to clarify the relationship between flame propagation velocity and scalar dissipation rate, which is the core properties in a triple flame stability.

  • PDF

Simulation of a Diffusion Flame in Turbulent Mixing Layer by the Flame Hole Dynamics Model with Level-Set Method (Level-Set 방법이 적용된 Flame Hole Dynamics 모델을 통한 난류 혼합층 확산화염 모사)

  • Kim, Jun-Hong;Chung, S.H.;Ahn, K.Y.;Kim, J.S.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.102-111
    • /
    • 2004
  • Partial quenching structure of turbulent diffusion flames in a turbulent mixing layer is investigated by the method of flame hole dynamics to develope a prediction model for the turbulent lift off. The present study is specifically aimed to remedy the problem of the stiff transition of the conditioned partial burning probability across the crossover condition by adopting level-set method which describes propagating or retreating flame front with specified propagation speed. In light of the level-set simulations with two model problems for the propagation speed, the stabilizing conditions for a turbulent lifted flame are suggested. The flame hole dynamics combined with level-set method yields a temporally evolving turbulent extinction process and its partial quenching characteristics is compared with the results of the previous model employing the flame-hole random walk mapping. The probability to encounter reacting' state, conditioned with scalar dissipation rate, demonstrated that the conditional probability has a rather gradual transition across the crossover scalar dissipation rate in contrast to the stiff transition of resulted from the flame-hole random walk mapping and could be attributed to the finite response of the flame edge propagation.

  • PDF

Simulation of a Diffusion Flame in Turbulent Mixing Layer by the Flame Hole Dynamics Model with Level-Set Method (Level-Set 방법이 적용된 Flame Hole Dynamics 모델을 통한 난류 혼합층 확산화염의 모사)

  • Kim, Jun-Hong;Chung, S.H.;Ahn, K.Y.;Kim, J.S.
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.2
    • /
    • pp.18-29
    • /
    • 2004
  • Partial quenching structure of diffusion flames in a turbulent mixing layer has been investigated by the method of flame hole dynamics in oder to develope a prediction model for the phenomenon of turbulent flame lift off. The present study is specifically aimed to remedy the shortcoming of the stiff transition of the conditioned partial burning probability across the crossover condition by employing the level-set method which enables us to include the effect of finite flame edge propagation speed. In light of the level-set simulation results with two models for the edge propagation speed, the stabilizing conditions for turbulent lifted flame are suggested. The flame hole dynamics combined with the level-set method yields a temporally evolving turbulent extinction process and its partial quenching characteristics is compared with the results of the previous model employing the flame-hole random walk mapping based on three critical scalar dissipation rates. The probability to encounter reacting state, conditioned with scalar dissipation rate, demonstrated that the conditional probability has a rather gradual transition across the crossover scalar dissipation rate. Such a smooth transition is attributed to the finite response of the flame edge propagation.

  • PDF

Application of Light Collecting Probe with High Spatial Resolution to Spark-Ignited Spherical Spray Flames

  • Yang, Young-Joon;Akamatsu, Fumiteru;Katsuki, Masashi
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.2058-2065
    • /
    • 2004
  • A light collecting probe named Multi-color Integrated Cassegrain Receiving Optics (MICRO) is applied to spark-ignited spherical spray flames to obtain the flame propagation speed in freely falling droplet suspension produced by an ultrasonic atomizer. Two MICRO probes are used to monitor time-series signals of OH chemiluminescence from two different locations in the flame. By detecting the arrival time difference of the propagating flame front, the flame propagation speed is calculated with a two-point delay-time method. In addition, time-series images of OH chemiluminescence are simultaneously obtained by a high-speed digital CCD camera to ensure the validity of the two-point delay-time method by the MICRO system. Furthermore, the relationship between the spray properties measured by phase Doppler anemometer (PDA) and the flame propagation speed are discussed with three different experimental conditions by changing the fuel injection rate. It was confirmed that the two-point delay-time method with two MICRO probes is useful and convenient to obtain the flame propagation speed and that the flame propagation speed depends on the spray properties.

Application of Light Collecting Probe with High Spatial Resolution to Spark-Ignited Spherical Spray Flames (불꽃점화 구형분무화염에서 고공간 분해능을 가진 집광프로브의 응용)

  • Yang Young-Joon
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.20-25
    • /
    • 2004
  • In order to obtain the flame Propagation speed in freely falling droplet suspension Produced by an ultrasonic atomizer, a light collecting probe named Multi-color Integrated Cassegrain Receiving Optics (MICRO) is applied to spark-ignited spherical spray flames. Two MICRO probes are used to monitor time-series signals of OH chemilumine-scence from two different locations in the flame. The flame propagation speed is calculated by detecting the arrival time difference of the propagating flame front. In addition, time-series images of OH chemiluminescence are simultaneously obtained by a high-speed digital CCD camera to ensure the validity of the MICRO system. Furthermore, relationship between the spray properties measured by phase Doppler anemometer (PDA) and the flame propagation speed are discussed with k different experimental conditions by changing the fuel injection rate. It was confirmed that the MICRO probe system was very useful and convenient to obtain the flame propagation speed and that the flame propagation speed was different depending on the spray properties.