• 제목/요약/키워드: Flagellin gene

검색결과 10건 처리시간 0.032초

전북지역 한우에서 분리한 기종저 균의 유전학적 특성 규명 (Genetic characterization and phylogenetic analysis of Clostridium chauvoei isolated from Hanwoo in Jeonbuk)

  • 김철민;정재명;최기영
    • 한국동물위생학회지
    • /
    • 제37권3호
    • /
    • pp.157-164
    • /
    • 2014
  • Clostridium chauvoei is the etiologic agent of blackleg, a high mortality rated disease infection mainly cattle. In the present study, the partial sequences of 16S rRNA and flagellin gene of C. chauvoei isolated in Jeonbuk, Korea were determined and compared with those of reference strain. Oligonucleotide primers were designed to amplify a 811 bp fragment of 16S rRNA gene and 1229 bp fragment of flagellin gene. Sequencing analysis of 16S rRNA gene showed high homology to the reference strains ranging 82.3% to 100%, while flagellin gene were different from published foreign clostridia, showing 98.7% to 72.0% nucleotide sequence homology. Phylogenetic analysis based on 16S rRNA gene revealed the close phylogenetic relationship of C. chauvoei and C. septicum in cluster I, which includes C. carnis, C. tertium, C. quinii, C. celatum, C. perfringens, C. absonum, C. botulinum B. Phylogentic analysis also revealed that flagellin gene formed a single cluster with C. chauvoei, C. septicum, C. novyi A, C. novyi B, C. tyrobutylicum, C. acetobutylicum. The genetic informations obtained from this study could be useful for the molecular study of C. chauvoei.

염 농도가 어류 병원체 Edwardsiella tarda의 운동성과 편모발현에 미치는 영향 (Effects of Salt Concentration on Motility and Expression of Flagellin Genes in the Fish Pathogen Edwardsiella tarda)

  • 유종언;박준모;강호영
    • 생명과학회지
    • /
    • 제21권10호
    • /
    • pp.1487-1493
    • /
    • 2011
  • 염농도에 따른 E. tarda CK41의 운동성을 알아보기 위하여 1.0%와 3.5%의 염농도를 가지는 운동성 측정 배지에서 집락의 변화를 관찰한 결과, 3.5% 염농도 조건에서 운동성이 감소하는 것을 확인할 수 있었다. 1.0%과 3.5% 염농도 조건에서의 생육도를 측정해본 결과 각 염농도 조건에 따른 생균수의 차이는 매우 적은 것으로 보아, 높은 염농도에서의 운동성의 감소는 생육정체가 아닌 실질적인 운동성의 차이에 의함을 알 수 있었다. 이러한 염농도에 의한 운동성의 차이가 편모에 의한 것인지를 알아보기 위하여 투과 전자 현미경으로 형태학적 관찰을 해본 결과, 3.5% 염농도에서는 편모의 형성이 되지 않음을 확인하였다. E. tarda는 PFAD와 FDP 두개의 편모 유전자를 가지며 이들간의 아미노산 상동률은 93%로 높은 편이다. 편모의 발현양의 확인을 위하여 PFAD 특이적인 다클론성 항체를 제작하기 위하여, PFAD를 과발현시키는 재조합 플라스미드 pBP793을 구축하여 대장균 발현시스템으로 발현시켜 정제한 후, 토끼에서 면역반응을 유도하여 특이 항체를 제작하였다. PFAD 특이적인 다클론성 항체를 이용한 immunoblot assay 결과, 3.5% 염농도 조건에서 배양한 E. tarda CK41의 경우 1.0% 염농도에서 보다 반응하는 면역 활성 단백질 밴드가 낮은 것으로 측정되었다. 이러한 결과를 종합하여 볼 때, 염농도가 높은 해수환경에서의 운동성의 감소는 E. tarda CK41의 편모 단백질이 제대로 발현되지 않아 기능적인 편모의 형성이 이루어지지 않는다는 것을 예증하고 있다. 향후 연구에서 어떠한 메카니즘에 의해 염농도가 flagellin의 발현을 조절하는지를 밝힐 필요가 있다.

Investigation of gene expression in primary embryonic cell line (FGBC8) from olive flounder Paralichthys olivaceus

  • Kim, Ju-Won;Cho, Ja Young;Chun, Won-Kyong;Kim, Dong-Gyun;Nam, Bo-Hye;Nho, Eun-Soo;Kim, Young-Ok;Kong, Hee Jeong
    • Fisheries and Aquatic Sciences
    • /
    • 제24권11호
    • /
    • pp.370-374
    • /
    • 2021
  • In this paper, we have reported the expression of immune-related gene in a new embryonic cell line (FGBC8) which was established from olive flounder (Paralichthys olivaceus) embryos. To explore the cell biotechnological applicability, the FGBC8 cells were incubated with the several mitogens such as lipopolysaccharide (LPS), polyinosinic-polycytidylic acid (poly I:C), flagellin, and interferon (IFN)-γ. After incubation, the expression of immune-related gene was observed in FGBC8 cells through the quantitative real-time PCR. Our results indicate that FGBC8 cells will serve as a valuable research tool for investigating host-pathogen interactions as well as cell biotechnological applications.

Salmonella vector induces protective immunity against Lawsonia and Salmonella in murine model using prokaryotic expression system

  • Sungwoo Park;Eunseok Cho;Amal Senevirathne;Hak-Jae Chung;Seungmin Ha;Chae-Hyun Kim;Seogjin Kang;John Hwa Lee
    • Journal of Veterinary Science
    • /
    • 제25권1호
    • /
    • pp.4.1-4.14
    • /
    • 2024
  • Background: Lawsonia intracellularis is the causative agent of proliferative enteropathy and is associated with several outbreaks, causing substantial economic loss to the porcine industry. Objectives: In this study, we focused on demonstrating the protective effect in the mouse model through the immunological bases of two vaccine strains against porcine proliferative enteritis. Methods: We used live-attenuated Salmonella Typhimurium (ST) secreting two selected immunogenic LI antigens (Lawsonia autotransporter A epitopes and flagellin [FliC]-peptidoglycan-associated lipoprotein-FliC) as the vaccine carrier. The constructs were cloned into a Salmonella expression vector (pJHL65) and transformed into the ST strain (JOL912). The expression of immunogenic proteins within Salmonella was evaluated via immunoblotting. Results: Immunizing BALB/c mice orally and subcutaneously induced high levels of LI-specific systemic immunoglobulin G and mucosal secretory immunoglobulin A. In immunized mice, there was significant upregulation of interferon-γ and interleukin-4 cytokine mRNA and an increase in the subpopulations of cluster of differentiation (CD) 4+ and CD 8+ T lymphocytes upon splenocytes re-stimulation with LI antigens. We observed significant protection in C57BL/6 mice against challenge with 106.9 times the median tissue culture infectious dose of LI or 2 × 109 colony-forming units of the virulent ST strain. Immunizing mice with either individual vaccine strains or co-mixture inhibited bacterial proliferation, with a marked reduction in the percentage of mice shedding Lawsonia in their feces. Conclusions: Salmonella-mediated LI gene delivery induces robust humoral and cellular immune reactions, leading to significant protection against LI and salmonellosis.

TaqMan 실시간 중합 효소 연쇄반응에 의한 살모넬라속의 검출 및 ompC 항원단백 유전자의 비교 (Detection of Salmonella spp. by TaqMan real-time PCR and comparison of nucleotide sequences of ompC gene among Salmonella)

  • 이영성;최경성;김명철;한재철;채준석
    • 대한수의학회지
    • /
    • 제42권4호
    • /
    • pp.513-522
    • /
    • 2002
  • Antigenic ompC genes of S. gallinarum, S. pullorum and S. dublin were characterized among Salmonella spp. isolated from chickens and other animals to identify genetic variation. Salmonella ompC gene fragment (1,027 bp) was amplified by PCR and the amplicons were cloned for comparison of nucleotide sequences. The identity of the sequences between S. gallinarum and S. pullorum, S. gallinarum and S. dublin, S. pullorum and S. dublin was 99.8%, 97.6% and 97.8%, respectively. Also, we found that ompC has some diversity between S. gallinarum and S. pullorum, and other Salmonella spp. which may be useful to type the organisms. Similar to diagnosis in other organisms, the TaqMan PCR method can be applied to rapid and accurate diagnosis of salmonellosis in chickens and other animals. We designed PCR primers and TaqMan probe for flagellin gene (fliC) for detection of Salmonella spp. by TaqMan PCR. The TaqMan PCR method was 10,000 times more sensitive than conventional PCR.

Carbon Storage Regulator A (csrA) Gene Regulates Motility and Growth of Bacillus licheniformis in the Presence of Hydrocarbons

  • Angel, Laura Iztacihuatl Serrano;Segura, Daniel;Jimenez, Jeiry Toribio;Barrera, Miguel Angel Rodriguez;Pineda, Carlos Ortuno;Ramirez, Yanet Romero
    • 한국미생물·생명공학회지
    • /
    • 제48권2호
    • /
    • pp.185-192
    • /
    • 2020
  • The global carbon storage regulator (Csr) system is conserved in bacteria and functions as a regulator in the exponential and stationary phases of growth in batch culture. The Csr system plays a role in the central carbon metabolism, virulence, motility, resistance to oxidative stress, and biofilm formation. Although the Csr was extensively studied in Gram negative bacteria, it has been reported only in the control of motility in Bacillus subtilis among Gram positive bacteria. The goal of this study was to explore the role of the csrA gene of Bacillus licheniformis M2-7 on motility and the bacterial ability to use hydrocarbons as carbon source. We deleted the csrA gene of B. licheniformis M2-7 using the plasmid pCsr-L, harboring the spectinomycin cassette obtained from the plasmid pHP45-omega2. Mutants were grown on culture medium supplemented with 2% glucose or 0.1% gasoline and motility was assessed by electron microscopy. We observed that CsrA negatively regulates motility by controlling the expression of the hag gene and the synthesis of flagellin. Notably, we showed the ability of B. licheniformis to use gasoline as a unique carbon source. Our results demonstrated that CsrA is an indispensable regulator for the growth of B. licheniformis M2-7 on gasoline.

Proteomic Analysis of Global Changes in Protein Expression During Exposure of Gamma Radiation in Bacillus sp. HKG 112 Isolated from Saline Soil

  • Gupta, Anil Kumar;Pathak, Rajiv;Singh, Bharat;Gautam, Hemlata;Kumar, Ram;Kumar, Raj;Arora, Rajesh;Gautam, Hemant K.
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권6호
    • /
    • pp.574-581
    • /
    • 2011
  • A Gram-positive bacterium was isolated from the saline soils of Jangpura (U.P.), India, and showed high-level of radiation-resistant property and survived upto 12.5 kGy dose of gamma radiation. The 16S rDNA sequence of this strain was examined, identified as Bacillus sp. strain HKG 112, and was submitted to the NCBI GenBank (Accession No. GQ925432). The mechanism of radiation resistance and gene level expression were examined by proteomic analysis of whole-cell extract. Two proteins, 38 kDa and 86.5 kDa excised from SDS-PAGE, which showed more significant changes after radiation exposure, were identified by MALDI-TOF as being flagellin and S-layer protein, respectively. Twenty selected 2-DE protein spots from the crude extracts of Bacillus sp. HKG 112, excised from 2- DE, were identified by liquid chromatography mass spectrometry (LC-MS) out of which 16 spots showed significant changes after radiation exposure and might be responsible for the radiation resistance property. Our results suggest that the different responses of some genes under radiation for the expression of radiation-dependent proteins could contribute to a physiological advantage and would be a significant initial step towards a fullsystem understanding of the radiation stress protection mechanisms of bacteria in different environments.

A tdcA Mutation Reduces the Invasive Ability of Salmonella enterica Serovar Typhimurium

  • Kim, Minjeong;Lim, Sangyong;Kim, Dongho;Choy, Hyon E.;Ryu, Sangryeol
    • Molecules and Cells
    • /
    • 제28권4호
    • /
    • pp.389-395
    • /
    • 2009
  • We previously observed that the transcription of some flagellar genes decreased in Salmonella Typhimurium tdcA mutant, which is a gene encoding the transcriptional activator of the tdc operon. Since flagella-mediated bacterial motility accelerates the invasion of Salmonella, we have examined the effect of tdcA mutation on the invasive ability as well as the flagellar biosynthesis in S. Typhimurium. A tdcA mutation caused defects in motility and formation of flagellin protein, FliC in S. Typhimurium. Invasion assays in the presence of a centrifugal force confirmed that the defect of flagellum synthesis decreases the ability of Salmonella to invade into cultured epithelial cells. In addition, we also found that the expression of Salmonella pathogenicity island 1 (SPI1) genes required for Salmonella invasion was down-regulated in the tdcA mutant because of the decreased expression of fliZ, a positive regulator of SPI1 transcriptional activator, hilA. Finally, the virulence of a S. Typhimurium tdcA mutant was attenuated compared to a wild type when administered orally. This study implies the role of tdcA in the invasion process of S. Typhimurium.

All-trans retinoic acid가 면역세포의 Toll-like receptor 5 발현에 미치는 영향 (Effects of all-trans retinoic acid on expression of Toll-like receptor 5 on immune cells)

  • 김기형;박상준
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제36권6호
    • /
    • pp.481-489
    • /
    • 2010
  • Introduction: TLR-5, a member of the toll-like receptor (TLR) family, is a element of the type I transmembrane receptors, which are characterized by an intracellular signaling domain homolog to the interleukin-1 receptor. These receptors recognize microbial components, particularly bacterial flagellin. All-trans retinoic acid (atRA, tretinoin), a natural metabolite of vitamin A, acts as a growth and differentiation factor in many tissues, and is also needed for immune functions. In this study, THP-1 human macrophage-monocytes were used to examine the mechanisms by which atRA regulated the expression of TLR-5. Because the molecular mechanism underlying this regulation at the transcriptional level is also unclear, this study examined which putative transcription factors are responsible for TLR-5 expression by atRA in immune cells. Materials and Methods: This study examined whether atRA induces the expression of TLR-5 in THP-1 cells using reverse transcription-polymerase chain reaction (RT-PCR), and which transcription factors are involved in regulating the TLR-5 promoter in RAW264.7 cells using a reporter assay system. Western blot analysis was used to determine which signal pathway is involved in the expression of TLR-5 in atRA-treated THP-1 cells. Results: atRA at a concentration of 10 nM greatly induced the expression of TLR-5 in THP-1 cells. Human TLR-5 promoter contains three Sp-1/GC binding sites around -50 bp and two NF-kB binding sites at -380 bp and -160 bp from the transcriptional start site of the TLR-5 gene. Sp-1/GC is primarily responsible for the constitutive TLR-5 expression, and may also contribute to NF-kB at -160 bp to induce TLR-5 after atRA stimulation in THP-1 cells. The role of NF-kB in TLR-5 expression was further confirmed by inhibitor pyrrolidine dithiocarbamate (PDTC) experiments, which greatly reduced the TLR-5 transcription by 70-80%. Conclusion: atRA induces the expression of the human TLR-5 gene and NF-kB is a critical transcription factor for the atRA-induced expression of TLR-5. Accordingly, it is conceivable that retinoids are required for adequate innate and adaptive immune responses to agents of infectious diseases. atRA and various synthetic retinoids have been used therapeutically in human diseases, such as leukemia and other cancers due to the antiproliferative and apoptosis inducing effects of retinoids. Therefore, understanding the molecular regulatory mechanism of TLR-5 may assist in the design of alternative strategies for the treatment of infectious diseases, leukemia and cancers.

Pathogen Associated Molecular Pattern (PAMP)-Triggered Immunity Is Compromised under C-Limited Growth

  • Park, Hyeong Cheol;Lee, Shinyoung;Park, Bokyung;Choi, Wonkyun;Kim, Chanmin;Lee, Sanghun;Chung, Woo Sik;Lee, Sang Yeol;Sabir, Jamal;Bressan, Ray A.;Bohnert, Hans J.;Mengiste, Tesfaye;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • 제38권1호
    • /
    • pp.40-50
    • /
    • 2015
  • In the interaction between plants and pathogens, carbon (C) resources provide energy and C skeletons to maintain, among many functions, the plant immune system. However, variations in C availability on pathogen associated molecular pattern (PAMP) triggered immunity (PTI) have not been systematically examined. Here, three types of starch mutants with enhanced susceptibility to Pseudomonas syringae pv. tomato DC3000 hrcC were examined for PTI. In a dark period-dependent manner, the mutants showed compromised induction of a PTI marker, and callose accumulation in response to the bacterial PAMP flagellin, flg22. In combination with weakened PTI responses in wild type by inhibition of the TCA cycle, the experiments determined the necessity of C-derived energy in establishing PTI. Global gene expression analyses identified flg22 responsive genes displaying C supply-dependent patterns. Nutrient recycling-related genes were regulated similarly by C-limitation and flg22, indicating re-arrangements of expression programs to redirect resources that establish or strengthen PTI. Ethylene and NAC transcription factors appear to play roles in these processes. Under C-limitation, PTI appears compromised based on suppression of genes required for continued biosynthetic capacity and defenses through flg22. Our results provide a foundation for the intuitive perception of the interplay between plant nutrition status and pathogen defense.