Browse > Article
http://dx.doi.org/10.5352/JLS.2011.21.10.1487

Effects of Salt Concentration on Motility and Expression of Flagellin Genes in the Fish Pathogen Edwardsiella tarda  

Yu, Jong-Earn (Department of Microbiology, Pusan National University)
Park, Jun-Mo (Department of Microbiology, Pusan National University)
Kang, Ho-Young (Department of Microbiology, Pusan National University)
Publication Information
Journal of Life Science / v.21, no.10, 2011 , pp. 1487-1493 More about this Journal
Abstract
E. tarda, a fish pathogen, can survive in seawater under relatively high salt conditions as well as in fish under physiological salt conditions. Bacterial growth under different salt concentrations may influence the expression of genes involved in bacterial structure and physiology. The growth rate of E. tarda culture in high salt (3.5% NaCl) was similar to that in low salt (1.0% NaCl, physiological salt concentration). Interestingly, the strain moved much faster in low salt conditions than in high salt conditions. Electron microscopic observation demonstrated that the bacterial cells grown in high salt had less or no flagellation. Obvious flagellation was observed in the parental strain E. tarda CK41 grown in low-salt condition. Two putative genes coding flagellin were identified in the E. tarda genome sequences. The amino acid sequence comparison of each gene revealed 93% identities. A flagellin gene was PCR amplified and cloned into a cloning vector. Using an E. coli protein expression system, a part of flagellin protein was overexpressed. Using the purified protein, an anti-flagellin antibody was raised in the rabbit. Immunoblot analyses with flagellin specific antibody demonstrated that E. tarda CK41 expressed falgellin in low salt conditions, which is consistent with the results seen in motility assay and microscopic observation. This is the first report of salt regulated flagella expression in E. tarda.
Keywords
Edwardsiella tarda; flagella; motility; NaCl concentration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang, X., Q. Wang, J. Xiao, Q. Liu, H. Wu, L. Xu, and Y. Zhang. 2009. Edwardsiella tarda T6SS component evpP is regulated by esrB and iron, and plays essential roles in the invasion of fish. Fish Shellfish Immunol. 27, 469-477.   DOI
2 Wong, J. D., M. A. Miller, and J. M. Janda. 1989. Surface properties and ultrastructure of Edwardsiella species. J. Clin. Microbiol. 27, 1797-1801.
3 Xiao, J., Q. Wang, Q. Liu, L. Xu, X. Wang, H. Wu, and Y. Zhang. 2009. Characterization of Edwardsiella tarda rpoS: effect on serum resistance, chondroitinase activity, biofilm formation, and autoinducer synthetases expression. Appl. Microbiol. Biotechnol. 83, 151-160.   DOI
4 Zheng, J., S. L. Tung, and K. Y. Leung. 2005. Regulation of a type III and a putative secretion system in Edwardsiella tarda by EsrC is under the control of a two-component system, EsrA-EsrB. Infect. Immun. 73, 4127-4137.   DOI
5 Shoemaker, C. A., P. H. Klesius, C. Lim, and M. Yildirim. 2003. Feed deprivation of channel catfish, Ictalurus punctatus (Rafinesque), influences organosomatic indices, chemical composition and susceptibility to Flavobacterium columnare. J. Fish. Dis. 26, 553-561.   DOI
6 Thune, R., L. Stanley, and R. Cooper. 1993. Pathogenesis of gram-negative bacterial infections in warmwater fish. Annu. Rev. Fish. Dis. 3, 37-68.   DOI
7 Steinum, T., A. Kvellestad, D. J. Colquhoun, M. Heum, S. Mohammad, R. N. Grøntvedt, and K. Falk. 2010. Microbial and pathological findings in farmed Atlantic salmon Salmo salar with proliferative gill inflammation. Dis. Aquat. Org. 91, 201-211.   DOI
8 Sun, M., M. Wartel, E. Cascales, J. W. Shaevitz, and T. Mignot. 2011. Motor-driven intracellular transport powers bacterial gliding motility. Proc. Natl. Acad. Sci. USA 108, 7559-7564.   DOI
9 Tan, Y. P., J. Zheng, S. L. Tung, I. Rosenshine, and K. Y. Leung. 2005. Role of type III secretion in Edwardsiella tarda virulence. Microbiology 151, 2301-2313.   DOI
10 Towbin, H., T. Staehelin, and J. Gordon. 1992. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Biotechnology 24, 145-149.
11 Tremblay, J., and E. Deziel. 2010. Gene expression in Pseudomonas aeruginosa swarming motility. BMC Genomics 11, 587.   DOI
12 Wang, I. K., H. L. Kuo, Y. M. Chen, C. L. Lin, H. Y. Chang, F. R. Chuang, and M. H. Lee. 2005. Extraintestinal manifestations of Edwardsiella tarda infection. Int. J. Clin. Pract. 59, 917-921.   DOI
13 Wang, Q., M. Yang, J. Xiao, H. Wu, X. Wang, Y. Lv, L. Xu, H. Zheng, S. Wang, G. Zhao, Q. Liu, and Y. Zhang. 2009. Genome sequence of the versatile fish pathogen Edwardsiella tarda provides insights into its adaptation to broad host ranges and intracellular niches. PLoS ONE. 4, e7646.   DOI
14 Chhabra, G., T. Upadhyaya, and A. Dixit. 2011. Molecular cloning, sequence analysis and structure modeling of OmpR, the response regulator of Aeromonas hydrophila. Mol. Biol. Rep. Published online.
15 Decostere, A. and F. Haesebrouck. 1999. Influence of water quality and temperature on adhesion of high and low virulence Flavobacterium columnare strains to isolated gill arches. J. Fish. Dis. 22, 1-11.   DOI   ScienceOn
16 Chng, C. P. and A. Kitao. 2008. Thermal unfolding simulations of bacterial flagellin: insight into its refolding before assembly. Biophys. J. 94, 3858-3871.   DOI
17 Chowdhury, M. B. R. and H. Wakabayashi. 1990. Survival of four major bacterial fish pathogens in different types of experimental water. Banglad. J. Microbiol. 7, 47-54.
18 Clarke, M. B. and V. Sperandio. 2005. Transcriptional regulation of flhDC by QseBC and sigma (FliA) in enterohaemorrhagic Escherichia coli. Mol. Microbiol. 57, 1734-1749.   DOI
19 Gao, H., Y. Zhang, Y. Han, L. Yang, X. Liu, Z. Guo, Y. Tan, X. Huang, D. Zhou, and R. Yang. 2011. Phenotypic and transcriptional analysis of the osmotic regulator OmpR in Yersinia pestis. BMC Microbiol. 11, 39.   DOI
20 Graf, J., P. V. Dunlap, and E. G. Ruby. 1994. Effect of transposon-induced motility mutations on colonization of the host light organ by Vibrio fischeri. J. Bacteriol. 176, 6986-6991.
21 Kodama, H., T. Murai, and Y. Nakanishi. 1987. Bacterial infection which produces high mortality in cultured Japanese flounder (Paralichthys olivaceus) in Hokkaido. Jpn. J. Vet. Res. 35, 227-234.
22 Samatey, F. A., K. Imada, S. Nagashima, F. Vonderviszt, T. Kumasaka, M. Yamamoto, and K. Namba. 2001. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410, 331-337.   DOI
23 Sambrook, J. and D. William Russell. 2001. Molecular Cloning, 3rd eds. CSHL Press, New York.
24 Bhagwat, A. A., W. Jun, L. Liu, P. Kannan, M. Dharne, B. Pheh, B. D. Tall, M. H. Kothary, K. C. Gross, S. Angle, J. Meng, and A. Smith. 2009. Osmoregulated periplasmic glucans of Salmonella enterica serovar Typhimurium are required for optimal virulence in mice. Microbiology 155, 229-237.   DOI
25 Altinok, I. 2001. Effects of low salinities on Flavobacterium columnare infection of euryhaline and freshwater stenohaline fish. J. Fish. Dis. 24, 361-367   DOI
26 Attridge, S. R. and D. Rowley. 1983. The role of the flagellum in the adherence of Vibrio cholerae. J. Infect. Dis. 147, 864-872.   DOI
27 Bertani, G. 1951. Studies on lysogenesis I.: The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62, 293-300.
28 Blair, D. F., and H. C. Berg. 1990. The MotA protein of E. coli is a proton-conducting component of the flagellar motor. Cell 60, 439-449.   DOI   ScienceOn