• Title/Summary/Keyword: Fixed Sectional Method

Search Result 43, Processing Time 0.022 seconds

An Analysis of the Hygroscopic Aerosol Behavior Using the Moving Sectional Method (변동구간분할법을 이용한 흡습성 에어로졸의 거동 해석)

  • Park, J.W.;Kim, H.D.
    • Journal of ILASS-Korea
    • /
    • v.3 no.4
    • /
    • pp.25-34
    • /
    • 1998
  • Hygroscopic aerosols can rapidly grow in size by steam condensation even under subsaturated steam conditions. Much efforts have been made to handle this process, but there have been computational difficulties in handling the condensational growth of hygroscopic aerosols by contentional methods. A recently released computer code, CONTAIN 2.0, employs a new technique called Moving Sectional Method(MSM) to handle the growth of hygroscopic aerosols. As a part of the model verification efforts, we have used the code to simulate the VANAM M3U hygroscopic aerosol experiment. We assess the accuracies of the new MSM and the conventional Fixed Sectional Method(ESM) based on the simulation results. Also presented are discussions about the robustness of the MSM.

  • PDF

SHAPE OPTIMIZATION OF COMPRESSOR BLADES USING 3D NAVIER-STOKES FLOW PHYSICS

  • Lee K. D.;Chung J.;Shim J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.1-8
    • /
    • 2001
  • A CFD-based design method for transonic axial compressor blades was developed based on three-dimensional Navier-Stokes flow physics. The method employs a sectional three-dimensional (S3D) analysis concept where the three-dimensional flow analysis is performed on the grid plane of a span station with spanwise flux components held fixed. The S3D analysis produced flow solutions nearly identical to those of three-dimensional analysis, regardless of the initialization of the flow field. The sectional design based on the S3D analysis can include three-dimensional effects of compressor flows and thus overcome the deficiencies associated with the use of quasi-three-dimensional flow physics in conventional sectional design. The S3D design was first used in the inverse triode to find the geometry that produces a specified target pressure distribution. The method was also applied to optimize the adiabatic efficiency of the blade sections of Rotor 37. A new blade was constructed with the optimized sectional geometries at several span stations and its aerodynamic performance was evaluated with three-dimensional analyses.

  • PDF

Surface Design Using B-spline Skinning of Cross-Sectional Curves under Volume Constraint (체적등의 구속조건하에서 단면곡선들로부터 B-spline Skinning을 사용한 곡면 디자인)

  • 김형철
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.2
    • /
    • pp.87-102
    • /
    • 1998
  • Given a sequence of cross-sectional curves, the skinning method generates a freeform surface that interpolates the given curves in that sequence. This thesis presents a construction method of a B-spline skinning surface that is fair and satisfies volume constraints. The fairness metric is based on the parametric energy functional of a surface. The degrees of freedom in surface control are closely related lo control points in the skinning direction. The algorithm fur finding a skinning surface consists of two step. In the first step, an initial fair surface is generated without volume constraints and one coordinate of each control point is fixed. In the second step, a final surface that meets all constraints is constucted by rearranging the other coordinates of each control point that defines the initial surface A variational Lagrange optimization method produces a system of nonlinear equations, which can be solved numerically. Moreover, the reparametrization of given sectional curves is important for the construction of a reasonable skinning surface. This thesis also presents an intuitive metric for reparametrization and gives some examples that are optimized with respect to that metric.

  • PDF

Die Design for Shape Drawing to Improve the Dimensional Accuracy of a Hollow LM-Guide Rail (중공형 LM-Guide Rail의 치수정밀도 향상을 위한 형상인발 금형 설계)

  • Park, J.H.;Lee, K.H.;Kim, S.M.;Kim, H.J.;Kim, S.J.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.24 no.5
    • /
    • pp.340-347
    • /
    • 2015
  • Multi-pass shape drawing is used to manufacture long products of arbitrary cross-sectional shapes. This process allows smooth surface finishes and closely controlled dimensions of the cross-sectional shape. Tube shape drawing for hollow type products provides material savings and weight reduction. The intermediate die shapes are very important in multi-pass tube shape drawing. In the current paper, the design method for the intermediate dies in a tube shape drawing process is developed using a die offset for corner filling (DOCF) method. Underfill defects are related to the radial velocity distribution of each divided section in the deformation zone. The developed intermediate die shape design was applied to the two-pass tube shape drawing with fixed mandrel for manufacturing a hollow linear motion (LM) guide rail. The proposed design method led to uniform and steady metal flow at each divided section. FE-simulations and experiments were conducted to validate the effectiveness of the proposed method in multi-pass tube shape drawing process.

Enhancement Technique of Discharge Measurement Accuracy Using Kalesto Based on Index Velocity Method in Mountain Stream, Jeju Island (지표유속법 기반 제주 산지형 하천 Kalesto 유량 정확도 향상 기법)

  • Kim, Dong-Su;Yang, Sung-Kee;Kim, Soo-Jeong;Lee, Jun-Ho
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.371-381
    • /
    • 2015
  • In the mountain streams in Jeju Island, strong turbulence and roughness usually made it nearly impossible to utilize most of intrusive instrumentation for streamflow discharge measurements. Instead, a non-intrusive fixed electro-magnetic wave surface velocimetry (fixed EWSV: Kalesto) became alternatively popular in many representative streams to measure stream discharge seamlessly. Currently, Kalesto has shown noteworthy performance with little loss in flood discharge measurements and also has successfully provided discharge for every minute. However, Kalesto has been operated to regard its measured one-point velocity as the representative mean velocity for the given cross-section. Therefore, it could be highly possible to potentially encompass discharge measurements errors. In this study, we analyzed the difference between such Kalesto discharge measurements and other alternative concurrent discharge measurements such as Acoustic Doppler Current Profiler (ADCP) and mobile EWSV which were able to measure velocity in multi-points in the cross-section. Consequently, Kalesto discharge deviated from ADCP discharge in amount of 48% for relatively low flow, and more than 20% difference for high flow compared with mobile EWSV discharge measurements. These results indicated that the one-point velocity measured by Kalesto should be used as a cross-sectional mean velocity, rather it should be accounted for as an index-velocity in conjunction with directly measured cross-sectional mean velocity by using more reliable instrumentations. After inducing Kalesto Discharge Correction Coefficient (KDCC) that actually means relationship between index velocity and cross-sectional mean velocity, the corrected discharge from Kalesto was significantly improved. Therefore, we found that index velocity method should be applied to obtain better accuracy of discharge measurement in case of Kalesto operation.

A Study on the Fluid Flow by Change of Pressure & Flow in the Collapsible Tube (압출관에서의 압력 및 유형변화에 따른 유체유동에 관한 연구)

  • Kim, Jong-Eok;Lee, Han-Yeong;Hong, Gi-Bae
    • Journal of Biomedical Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.47-54
    • /
    • 1984
  • In order to research the flow in the thin wall compliant tube, this present study is attempt to measure the cross sectional area according to change of external pressure and flow by ultrasonic method different from willy used impedance technique for flow analysis about one dimensional Steads flow. The experimental results are as follows. 1) Measurement of cross sectional area ratio by ultrasonic method by comparison with experimental results of impedance technique & theoretical results were well consent. 2) Pressure difference of upstream and down stream is alwap's maximum range at 0.4 < $\alpha$ <0.5, and have no connection with changing external pressure. 3) when the external pressure is fixed and resistance is varied, Self excited oscillation occurs in the region at 0.5 < $\alpha$ <0.6, and oscillation disappear almost at R2>=1.2

  • PDF

An Analysis of the Farm Silo Supported by Ground (지반과 구조물 사이의 상호작용을 고려한 농업용 사이로의 해석에 관한 연구(IV) -제 4 보 관행설계법과의 비교)

  • 조진구;조현영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.2
    • /
    • pp.44-54
    • /
    • 1988
  • This study was carried out to investigate the applicability of the conventional design method for ground supported circular cylindrical shell structures. For this purpose, the ensiled farm silo was adopted as a model structures. Herein, the conventional design method was based on the assumption that such structures are clamped at the bottom edges or the ground pressure is independent of the deflection at the surface. In the present paper, the applicability of above assumption was checked out by comparison with an exact method considering soil-structure interaction. Some results of numerical calculation show us ; When the ground is very hard, for example Winkler's constant k is larger than 100 kg / cm$^2$ / cm, or the bottom plate of structures has a infinitely stiffness, for example the bottom plate thickness is larger than 100 cm, the sectional forces, obtained from the conventional method at any wall of structures resting on an elastic foundation, can used for design purpose. Therefore, if the above condition is satisfied then the conventional assumptions can be justified for the design purpose. In this case, the assumption that such structures are fixed at the lower edges was more realistic than the assumption that the reaction pressure acting on structures is uniformly disributed since the accuracy of results of the analysis by the former assumption was higher than that obtained from the latter assumption. But the sectional forces in the bottom plate resting on ground directly could not be evaluate correctly by the conventional method.

  • PDF

An Analysis of Determinants of Foreign Direct Investment to ASEAN+3 Member Nations (ASEAN+3회원국에 대한 해외직접투자 결정요인 분석)

  • Son, Yong-Jung
    • International Commerce and Information Review
    • /
    • v.11 no.2
    • /
    • pp.111-126
    • /
    • 2009
  • This study analysed determinants of Foreign Direct Investment to ASEAN+ 3 member nations using panel data for which cross-sectional data are combined with time series data. The data for the analysis included the amount of FDI, GDP, and indexes of economic independence. This study collected data from six nations(Indonesia, Malaysia, Philippines, Singapore, Thailand, Vietnam) whose data were easily available, China and Japan from 2003 to 2007 and analysed them. The results are summarized as follows: Using the pooled OLS method, we found Model 2 had the highest explanatory power whose adjusted R-squared was 89.4%, which accounted for about 89% of foreign investment. Using the fixed effect model, Model 2 had the highest explanatory power whose adjusted R-squared was 96.8%, which accounted for about 97% of foreign investment. Using the probability effect model, Model 5 had the highest explanatory power, but in respect to its statistical significance, only GDP was 1% significant and the rest variables had no significance.

  • PDF

The Elastic Critical Loads of Linearly Non-symmetrically Tapered Members (직선형으로 Taper진 비대칭 변단면 부재의 탄성임계하중)

  • 김효중;홍종국;이수곤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.299-306
    • /
    • 2000
  • The elastic critical load of a slender compression member plays an important role when the proper design of that member is required. For tapered compression members, however, there are cases when the conventional neutral equilibrium or energy method can't be applied to the determination of critical loads. In this paper, the finite element method is applied to the approximate determination of the linearly tapered members. In this paper, the bars are assumed to be tapered linearly along their axes. The parameters considered in this study are taper parameter, α and the sectional property parameter, m. The member ends are either hinged or fixed. The computed results using the finite element method are represented in the forms of algebraic equations. The regression technique is employed to determine the coefficients of the algebraic equations. Critical loads estimated by the proposed algebraic equations coincide flirty well with those employing the finite element method.

  • PDF

In vitro evaluation methods on adaptation of fixed dental prosthesis (고정성 보철물의 적합도에 대한 실험적 평가방법)

  • Lee, Hyunho;Lee, Du-Hyeong;Lee, Kyu-Bok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.2
    • /
    • pp.63-70
    • /
    • 2017
  • Clinically, the fit of fixed prosthesis is an essential element for successful restoration. The fit of prosthesis is largely classified into marginal fit and internal fit, and various methods to assess these have been introduced including microscopic margin measurement, cross-sectional measurement, silicone replica technique, 3-dimensional scanning data superposition, weight technique and micro CT scanning. Thus, this study is aimed at proposing a more convenient and accurate measurement method of fits in a digital environment by comparatively analyzing the advantages and disadvantages of each known method based on existing literature.