• Title/Summary/Keyword: Fixed Point Theorem

Search Result 537, Processing Time 0.027 seconds

A COMMON FIXED POINT THEOREM FOR A SEQUENCE OF MAPS IN A GENERALIZED MENGER SPACE

  • Jain, Shobha;Jain, Shishi;Bahdhur, Lal
    • East Asian mathematical journal
    • /
    • v.24 no.4
    • /
    • pp.359-368
    • /
    • 2008
  • The object of this paper is to establish a unique common fixed point theorem through weak compatibility for a sequence of self-maps satisfying a generalized contractive condition in a generalized Menger space. It improves and generalizes the result of Milovanovic-Arandelovic [2], Vasuki [10] and Sehgal and Bharucha-Reid [8]. All the results presented in this paper are new.

  • PDF

ON THE HYERS-ULAM SOLUTION AND STABILITY PROBLEM FOR GENERAL SET-VALUED EULER-LAGRANGE QUADRATIC FUNCTIONAL EQUATIONS

  • Dongwen, Zhang;John Michael, Rassias;Yongjin, Li
    • Korean Journal of Mathematics
    • /
    • v.30 no.4
    • /
    • pp.571-592
    • /
    • 2022
  • By established a Banach space with the Hausdorff distance, we introduce the alternative fixed-point theorem to explore the existence and uniqueness of a fixed subset of Y and investigate the stability of set-valued Euler-Lagrange functional equations in this space. Some properties of the Hausdorff distance are furthermore explored by a short and simple way.

INVESTIGATION OF A NEW COUPLED SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS IN FRAME OF HILFER-HADAMARD

  • Ali Abd Alaziz Najem Al-Sudani;Ibrahem Abdulrasool hammood Al-Nuh
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.2
    • /
    • pp.501-515
    • /
    • 2024
  • The primary focus of this paper is to thoroughly examine and analyze a coupled system by a Hilfer-Hadamard-type fractional differential equation with coupled boundary conditions. To achieve this, we introduce an operator that possesses fixed points corresponding to the solutions of the problem, effectively transforming the given system into an equivalent fixed-point problem. The necessary conditions for the existence and uniqueness of solutions for the system are established using Banach's fixed point theorem and Schaefer's fixed point theorem. An illustrate example is presented to demonstrate the effectiveness of the developed controllability results.

A selection theorem and its application

  • Lee, Gue-Myung;Kim, Do-Sang;Lee, Byung-Soo;Cho, Sung-Jin
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.3
    • /
    • pp.759-766
    • /
    • 1995
  • In this paper, we give equivalent forms of the selection theorem of Ding-Kim-Tan. As applications of the selection theorem of Ding-Kim-Tan, we obtain a fixed point theroem of Gale and Mas-Colell type and establish an equilibrium existence theorem for a qualitative game under suitable assumptions in a locally convex Hausdorff topological vector space.

  • PDF

Necessary and Sufficient Condition for the Solutions of First-Order Neutral Differential Equations to be Oscillatory or Tend to Zero

  • Santra, Shyam Sundar
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.1
    • /
    • pp.73-82
    • /
    • 2019
  • In this work, we give necessary and sufficient conditions under which every solution of a class of first-order neutral differential equations of the form $$(x(t)+p(t)x({\tau}(t)))^{\prime}+q(t)Hx({\sigma}(t)))=0$$ either oscillates or converges to zero as $t{\rightarrow}{\infty}$ for various ranges of the neutral coefficient p. Our main tools are the Knaster-Tarski fixed point theorem and the Banach's contraction mapping principle.

ON INVARIANT APPROXIMATION OF NON-EXPANSIVE MAPPINGS

  • Sharma, Meenu;Narang, T.D.
    • The Pure and Applied Mathematics
    • /
    • v.10 no.2
    • /
    • pp.127-132
    • /
    • 2003
  • The object of this paper is to extend and generalize the work of Brosowski [Fixpunktsatze in der approximationstheorie. Mathematica Cluj 11 (1969), 195-200], Hicks & Humphries [A note on fixed point theorems. J. Approx. Theory 34 (1982), 221-225], Khan & Khan [An extension of Brosowski-Meinardus theorem on invariant approximation. Approx. Theory Appl. 11 (1995), 1-5] and Singh [An application of a fixed point theorem to approximation theory J. Approx. Theory 25 (1979), 89-90; Application of fixed point theorem in approximation theory. In: Applied nonlinear analysis (pp. 389-394). Academic Press, 1979] in metric spaces having convex structure, and in metric linear spaces having strictly monotone metric.

  • PDF

THE EXTENSION OF FIXED POINT THEOREMS FOR SET VALUED MAPPING

  • Shi, Yimin;Ren, Limei;Wang, Xuyan
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.277-286
    • /
    • 2003
  • In this paper, the Monger Probabilistic n-metric space is presented, some Hex point theorem for set valued mapping are extended to Monger probabilistic n-metric space.

ON THE SOLVABILITY OF A NONLINEAR LANGEVIN EQUATION INVOLVING TWO FRACTIONAL ORDERS IN DIFFERENT INTERVALS

  • Turab, Ali;Sintunavarat, Wutiphol
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.1021-1034
    • /
    • 2021
  • This paper deals with a nonlinear Langevin equation involving two fractional orders with three-point boundary conditions. Our aim is to find the existence of solutions for the proposed Langevin equation by using the Banach contraction mapping principle and the Krasnoselskii's fixed point theorem. Three examples are also given to show the significance of our results.