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Abstract. In this work, we give necessary and sufficient conditions under which every
solution of a class of first-order neutral differential equations of the form(

x(t) + p(t)x(τ(t))
)′

+ q(t)H
(
x(σ(t))

)
= 0

either oscillates or converges to zero as t→∞ for various ranges of the neutral coefficient

p. Our main tools are the Knaster-Tarski fixed point theorem and the Banach’s contrac-

tion mapping principle.

1. Introduction

Consider a class of first-order nonlinear neutral differential equations with vari-
able delays of the form(

x(t) + p(t)x(τ(t))
)′

+ q(t)H
(
x(σ(t))

)
= 0,(1.1)

where
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(A1) p ∈ C([0,∞),R), q, τ, σ ∈ C(R+,R+) such that τ(t) < t, σ(t) < t with
τ(t), σ(t)→∞ as t→∞ and τ invertible when necessary, and

(A2) H ∈ C(R,R) is nondecreasing and satisfies uH(u) > 0 for all u 6= 0.

Santra [17] studied oscillatory behaviour of the solutions of neutral differential
equations of the form(

x(t) + p(t)x(t− τ)
)′

+ q(t)H
(
x(t− σ)

)
= 0(1.2)

and (
x(t) + p(t)x(t− τ)

)′
+ q(t)H

(
x(t− σ)

)
= f(t)(1.3)

for various ranges of the neutral coefficient p. The same work [17] also obtained
sufficient conditions for the existence of bounded positive solutions of (1.3). Candan
[5] obtained sufficient conditions for the existence of non-oscillatory solutions of first
order neutral differential equations having both delay and advance terms (known
as mixed equations) by using the Banach contraction mapping principle. Das and
Misra [6] established necessary and sufficient conditions such that every solution of
(1.3) either oscillates or tends to zero for constant p(t) = p, −1 < p ≤ 0, f ≥ 0 and

H satisfying the generalized sublinear condition
∫ ±k
0

dη
H(η) < ∞ for every positive

constant k. Guo et al. [10] studied necessary and sufficient conditions for oscillations
to occur in (1.2) with linear H and constant coefficients for p ∈ (0,∞).

The motivation of the present work comes from the above studies. In this work
we make an attempt to establish the necessary and sufficient conditions such that
every solution of (1.1) converges to zero as t→∞ for different ranges in the neutral
coefficient p.

The increasing interest in the oscillation properties of solutions to functional
differential equations (FDEs) during the last few decades has been stimulated
by applications arising in engineering and natural sciences. The new classes of
FDEs provide challenges in these application areas. Equations involving delay, and
those involving advance and a combination of both arise in the models on loss-less
transmission lines in high speed computers which are used to connect switching
circuits. The construction of these models using delays is complemented by the
mathematical investigation of nonlinear equations. Moreover, the delay differential
equations play an important role in modelling virtually every physical, technical,
or biological process, from celestial motion, to bridge design, to interactions be-
tween neurons. There has been many investigations into the oscillation and non-
oscillation of first order nonlinear neutral delay differential equations (See for e.g.
[1, 2, 3, 4, 5, 6, 7, 9, 13, 14, 15, 16, 17, 18, 19, 20]). However, the study of asymptotic
behaviour of solutions of (1.1) has received much less attention for |p(t)| < +∞.

Definition 1.1. We call a continuously differentiable function x(t) a solution of
(1.1), if there exists a t0 such that x(t) is defined for all t ≥ T ∗ = min{τ(t0), σ(t0)}
and satisfies (1.1) for all t ≥ t0. In the sequel, it will always be assumed that the
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solution of (1.1) exists on some half line [t1,∞) t1 ≥ t0. A solution of (1.1) is said to
be oscillatory, if it has arbitrarily large zeros; otherwise, it is called nonoscillatory.
An equation of the form (1.1) is called oscillatory, if all its solutions are oscillatory.

2. Main Results

Lemma 2.1.([11]) Let p, x, z ∈ C([0,∞),R) be such that z(t) = x(t) + p(t)x(τ(t)),
t ≥ τ(t) > 0 andx(t) > 0 for all t ≥ t1 > τ , lim inft→∞ x(t) = 0 and limt→∞ z(t) =
L exists. Let p(t) satisfy one of the following conditions:

(i) 0 ≤ p1 ≤ p(t) ≤ p2 < 1,

(ii) 1 < p3 ≤ p(t) ≤ p4 <∞,

(iii) −∞ < −p5 ≤ p(t) ≤ 0,

where ri > 0, 1 ≤ i ≤ 5. Then L = 0.

Remark 2.1. If, in the above lemma, x(t) < 0 for t ≥ τ(t) > 0, lim supt→∞ x(t) = 0
and limt→∞ z(t) = L ∈ R, exists, then L = 0.

Theorem 2.1. Assume that (A1) and (A2) hold and 0 ≤ p1 ≤ p(t) ≤ p2 < 1 for
all t ∈ R+. Let H be Lipschitz continuous on all intervals of the form [α, β] with
0 < α < β <∞. Then every solution of (1.1) either oscillates or converges to zero
as t→∞ if and only if

(A3)
∫∞
0
q(η) dη =∞.

Proof. Suppose that (A3) holds. Let x(t) be a solution of (1.1) on [t0,∞] where
t0 ≥ 0. If x(t) is oscillatory, then there is nothing to prove. We assume that x(t)
is non-oscillatory, that is, x(t) > 0 or x(t) < 0 for all t ≥ t0. We shall show that
x(t)→∞ as t→∞. We set

z(t) = x(t) + p(t)x
(
τ(t)

)
, t ≥ t0.(2.1)

From (1.1) it follows that

z′(t) = −q(t)H
(
x(σ(t))

)
< 0,(2.2)

holds and hence z(t) is a decreasing function for t ≥ t1 > t0 + ρ. Since z(t) > 0
for t ≥ t1, the limit limt→∞ z(t) must exist. Consequently, z(t) > x(t) implies that
x(t) is bounded. Our objective is to show that limt→∞ x(t) = 0. For this, we need
to show that lim inft→∞ x(t) = 0. If lim inft→∞ x(t) 6= 0, then there exists t2 > t1
and β > 0 such that x

(
σ(t)

)
≥ β > 0 for all t ≥ t2. This implies∫ t

t2

q(η)H
(
x(σ(η))

)
dη ≥ H(β)

[∫ t

t2

q(η) dη

]
→ +∞, as t→∞,
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due to (A3). On the other hand, we integrate (2.2) from t2 to t(> t2) to obtain∫ t

t2

q(η)H
(
x(σ(η))

)
dη = −

[
z(η)

]t
t2
<∞, as t→∞,

which results in the desired contradiction. Therefore, lim inft→∞ x(t) = 0. Conse-
quently, limt→∞ z(t) = 0 due to Lemma 2.1. As a result,

0 = lim
t→∞

z(t) = lim sup
t→∞

(
x(t) + p(t)x(τ(t))

)
≥ lim sup

t→∞
x(t),

which implies that lim supt→∞ x(t) = 0, that is, limt→∞ x(t) = 0.
If x(t) < 0 for t ≥ t0, then we may set y(t) = −x(t) for t ≥ t0 in (1.1) and we

find (
y(t) + p(t)y(τ(t))

)′
+ q(t)G

(
y(σ(t))

)
= 0

where G(u) = −H(−u). Clearly, G also satisfies (A2). Thus, we can apply the
same arguments as above to prove that limt→∞ x(t) = 0.

Next, we show that (A3) is necessary, that is, we need to show that the equation
(1.1) admits a nonoscillatory solution which does not tend to zero as t→∞ if the
limit exists. Suppose that (A3) does not hold such that the integral in (A3) is finite
for some 1− p2 > 0. Then there exists a t1 > 0 such that∫ ∞

t1

q(η) dη <
1− p2
10K

,

where K = max{K1, H(1)} and K1 is the Lipschitz constant of H on
[ 2(1−p2)

5 , 1
]
.

For t2 > t1 we set Y = BC([t2,∞),R), the space of real valued bounded continuous
functions on [t2,∞). Clearly, Y is a Banach space with respect to the sup norm
defined by

||y|| = sup{|y(t)| : t ≥ t2}.

Let us define the set

S =

{
u ∈ Y :

2(1− p2)

5
≤ u(t) ≤ 1, t ≥ t2

}
.

This set S is a closed and convex subspace of Y . Let Φ : S → S be defined by

(Φx)(t) =

{
(Φx)(t2 + ρ), t ∈ [t2, t2 + ρ]

−p(t)x(τ(t)) + 2+3p2
5 +

∫∞
t
q(η)H

(
x(σ(η))

)
dη, t ≥ t2 + ρ.

For an arbitrary x ∈ S

(Φx)(t) ≤ 2 + 3p2
5

+H(1)

[∫ ∞
t

q(η) dη

]
<

2 + 3p2
5

+
1− p2

10
=

1 + p2
2

< 1
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and

(Φx)(t) ≥ −p(t)x(τ(t)) +
2 + 3p2

5
≥ −p2 +

2 + 3p2
5

=
2(1− p2)

5
.

The above two inequalities imply that Φx ∈ S, too. Thus, Φ maps S back into
itself. For arbitrary y1, y2 ∈ S we have

|(Φy1)(t)− (Φy2)(t)| ≤ |p(t)||y1
(
τ(t)

)
− y2

(
τ(t)

)
|

+K1

∫ ∞
t

q(η)|y1
(
σ(η)

)
− y2

(
σ(η)

)
| dη.

Hence,

|(Φy1)(t)− (Φy2)(t)| ≤ p2||y1 − y2||+K1||y1 − y2||
[∫ ∞

t

q(η) dη

]
<

(
p2 +

1− p2
10

)
||y1 − y2||,

which implies that

||Φy1 − Φy1|| ≤ µ||y1 − y2||,

such that Φ is a contraction mapping, because µ = p2 + 1−p2
10 = 1+9p2

10 < 1. Since
S is complete and Φ is a contraction on S, Banach’s contraction mapping principle
implies that Φ has a unique fixed point on S. Hence Φx = x, which implies that

x(t) =

{
x(t2 + ρ), t ∈ [t2, t2 + ρ]

−p(t)x(τ(t)) + 2+3p2
5 +

∫∞
t
q(η)H

(
x(σ(η))

)
dη, t ≥ t2 + ρ

is a non-oscillatory solution of (1.1) and stays between the bounds of S,
[ 2(1−p2)

5 , 1
]
.

Thus, x cannot tend to zero for t→∞. Therefore, (A3) is the necessary condition.
This completes the proof of the theorem. 2

Theorem 2.2. Assume that (A1) and (A2) hold and 1 < p3 ≤ p(t) ≤ p4 < ∞
such that p23 > p4 for t ∈ R+. Let H is Lipschitz continuous on intervals of the
form [α, β] where 0 < α < β <∞. Then every solution of (1.1) either oscillates or
converges to zero as t→∞ if and only if (A3) holds.

Proof. The sufficient part follows from the proof of Theorem 2.1. For the necessary
part, we assume that (A3) does not hold. Then it is possible to find a t1 > 0 such
that ∫ ∞

t1

q(η) dη <
p3 − 1

2K
,
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where K = max{K1,K2} and K1 is the Lipschitz constant of H on [a, b] and
K2 = H(b). Thus,

a =
2λ(p3

2 − p4)− p4(p3 − 1)

2p32p4

b =
p3 − 1 + 2λ

2p3
, λ >

p4(p3 − 1)

2(p32 − p4)
> 0.

Let Y = BC([t2,∞),R) be the space of real valued bounded continuous functions
on [t2,∞). Clearly, Y is a Banach space with respect to sup norm defined by

||y|| = sup{|y(t)| : t ≥ t2}.

Define

S = {u ∈ Y : a ≤ u(t) ≤ b, t ≥ t2} .
It is easy to verify that S is a closed convex subspace of Y . Let Φ : S → S be such
that

(Φx)(t) =


(Φx)(t2 + ρ), t ∈ [t2, t2 + ρ]

−x
(
τ−1(t)

)
p
(
τ−1(t)

) + λ

p
(
τ−1(t)

) + 1

p
(
τ−1(t)

) [∫∞
τ−1(t)

q(η)H
(
x(σ(η))

)
dη
]
, t ≥ t2 + ρ.

For an arbitrary x ∈ S

(Φx)(t) ≤ H(b)

p
(
τ−1(t)

) [∫ ∞
τ−1(t)

q(η) dη

]
+

λ

p
(
τ−1(t)

) ≤ 1

p3

[
p3 − 1

2
+ λ

]
= b

and

(Φx)(t) ≥ −
x
(
τ−1(t)

)
p
(
τ−1(t)

) +
λ

p
(
τ−1(t)

) > − b

p3
+

λ

p4
= −p3 − 1 + 2λ

2p23
+

λ

p4

=
2λ(p3

2 − p4)− p4(p3 − 1)

2p32p4
= a.

This implies that Φx ∈ S, such that Φ maps S back into itself. For arbitrary
y1, y2 ∈ S

|(Φy1)(t)− (Φy2)(t)| ≤ 1

|p
(
τ−1(t)

)
|
|y1
(
τ−1(t)

)
− y2

(
τ−1(t)

)
|

+
K

|p
(
τ−1(t)

)
|

[∫ ∞
τ−1(t)

q(η)|y1(σ(η))− y2(σ(η))| dη

]
.

Hence,

|(Φy1)(t)− (Φy1)(t)| ≤ 1

p3
||y1 − y2||+

K

p3
||y1 − y2||

[∫ ∞
τ−1(t)

q(η) dη

]

<

(
1

p3
+
p3 − 1

2p3

)
||y1 − y2||,
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which implies that

||Φy1 − Φy2|| ≤ µ||y1 − y2||.

Consequently Φ is a contraction, because µ =
(

1
p3

+ p3−1
2p3

)
< 1. Hence, by Ba-

nach’s contraction mapping principle Φ has a unique fixed point in S, which is a
nonoscillatory solution of (1.1) on [a, b].

Thus the proof of the theorem is complete. 2

Theorem 2.3. Assume that (A1) and (A2) hold and −1 < −p5 ≤ p(t) ≤ 0 for
t ∈ R+ and p5 > 0. Then every solution of (1.1) either oscillates or converges to
zero as t→∞ if and only if (A3) holds.

Proof. Proceeding as in the proof of Theorem 2.1, we have obtained (2.2). Hence,
z(t) is monotonic on [t2,∞), t2 > t1. Let z(t) > 0 for t ≥ t2, the limit limt→∞ z(t)
must exist. Let z(t) < 0 for t ≥ t2. We claim that x(t) is bounded. If not, there
exists {ηn} such that τ(ηn) ≤ τn and ηn → ∞ as n → ∞, x(ηn) → ∞ as n → ∞
and

x(ηn) = max{x(s) : t2 ≤ s ≤ ηn}.

Therefore,

z(ηn) = x(ηn) + p(ηn)x
(
τ(ηn)

)
≥ (1− p5)x(ηn)→ +∞, as n→∞,

a contradiction to the face z(t) > 0. So, our claim holds. Consequently, z(t) ≤ x(t)
implies that limt→∞ z(t) exists. Hence for any z(t), x(t) is bounded. Using the
same type of argument as in the proof of Theorem 2.1, it is easy to show that
lim inft→∞ x(t) = 0 and by Lemma 2.1, we have limt→∞ z(t) = 0. Indeed,

0 = lim
t→∞

z(t) = lim sup
t→∞

(
x(t) + p(t)x(τ(t))

)
≥ lim sup

t→∞
x(t) + lim inf

t→∞

(
−p5x(τ(t))

)
= (1− p5) lim sup

t→∞
x(t).

Hence, lim supt→∞ x(t) = 0. The rest of the proof follows from Theorem 2.1.

Next, we suppose that (A3) does not hold such that the integral in (A3) is finite
for some 1− p5 > 0. Then there exist t1 > 0 such that∫ ∞

t1

q(η) dη <
1− p5
5H(1)

, t ≥ t1.

For t2 > t1, we let Y = BC([t2,∞),R) be the space of all real valued bounded
continuous functions defined on [t2,∞). Clearly, Y is a Banach space with respect
to sup norm defined by

||y|| = sup{|y(t)| : t ≥ t2}.
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Let K = {y ∈ Y : y(t) ≥ 0, t ≥ t2}. Then, Y is a partially ordered Banach space
(p.30, [11]). For u, v ∈ Y , we define u ≤ v if and only if u− v ∈ K. Let

S =

{
X ∈ Y :

1− p5
5
≤ x(t) ≤ 1, t ≥ t2

}
.

If x0(t) = 1−p5
5 , then x0 ∈ S and x0 = g.l.b S. Further, if φ ⊂ S∗ ⊂ S, then

S∗ =

{
x ∈ Y : l1 ≤ x(t) ≤ l2,

1− p5
5
≤ l1, l2 ≤ 1

}
.

Let v0(t) = l′2, t ≥ t3, where l′2 = sup{l2 : 1−p5
5 ≤ l2 ≤ 1}. Then v0 ∈ S and v0 =

l.u.b S∗. For t3 = t2 + ρ, define Φ : S → S by

(Φx)(t) =

{
(Φx)(t3), t ∈ [t2, t3]

−p(t)x(τ(t)) + 1−p5
5 +

∫∞
t
q(η)H

(
x(σ(η))

)
dη, t ≥ t3.

For every x ∈ S, (Φx)(t) ≥ 1−p5
5 and

(Φx)(t) ≤ p5 +
1− p5

5
+H(1)

[∫ ∞
t

q(η) dη

]
<

2 + 3p5
5

< 1.

The above two inequalities imply that Φx ∈ S, too. Thus Phi maps S back into
itself. For arbitary x1, x2 ∈ S, it is easy to verify that x1 ≤ x2 implies that
Φx1 ≤ Φx2. Hence by Knaster-Tarski fixed point theorem (Theorem 1.7.3, [11]), Φ
has a unique fixed point such that limt→∞ x(t) 6= 0. This completes the proof of
the theorem. 2

Theorem 2.4. Assume that (A1) and (A2) hold and −∞ < −p6 ≤ p(t) ≤ −p7 <
−1 for t ∈ R+ and p6, p7 > 0. Let H be Lipschitz continuous on intervals of the
form [α, β], 0 < α < β <∞. Then every bounded solutions of (1.1) either oscillates
or converges to zero as t→∞ if and only if (A3) holds.

Proof. The proof of the theorem follows from the proof of Theorem 2.2. For
necessary part, we need to mention the followings:∫ ∞

t1

q(η) dη <
p7 − 1

2K
,

where K = max{K1,K2} and K1 is the Lipschitz constant of H on [a, b], K2 = H(b)
such that

a =
2λp7 − p6(p7 − 1)

2p6p7
, b =

λ

p7 − 1

for

λ >
p6(p7 − 1)

2p7
> 0,
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and

(Φx)(t) =


(Φx)(t2 + ρ), t ∈ [t2, t2 + ρ]

−x
(
τ−1(t)

)
p
(
τ−1(t)

) − λ

p
(
τ−1(t)

) + 1

p
(
τ−1(t)

) [∫∞
τ−1(t)

q(η)H
(
x(σ(η))

)
dη
]
, t ≥ t2 + ρ.

This completes the proof of the theorem. 2

Remark 2.2. In the above theorems, H could be linear, sublinear or superlinear.

Remark 2.3. Lemma 2.1 does not include p(t) ≡ 1 for all t (see for e.g. [11]). The
present analysis does not allow the case p(t) ≡ −1 for all t. Hence in this work,
a necessary and sufficient condition is established excluding p(t) = ±1 for all t. It
seems that a different approach is necessary to study the case p(t) = ±1.

3. Example

Consider the differential equations(
x(t) + e−πx(τ(t))

)′
+ 2e2t−6π

(
x(σ(t))

)3
= 0,(3.1)

where 0 < p(t) = e−π < 1, τ(t) = t− π, σ(t) = t− 2π and H(x) = x3. Clearly, all
the conditions of Theorem 2.1 are satisfied. Hence, by Theorem 2.1 every solutions
of (3.1) converges to zero as t→∞. Indeed, x(t) = e−t is such a solution of (3.1).
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