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A COMMON FIXED POINT THEOREM FOR A SEQUENCE
OF MAPS IN A GENERALIZED MENGER SPACE

Shobha Jain, Shishi Jain, and Lal Bahdhur

Abstract. The object of this paper is to establish a unique common fixed
point theorem through weak compatibility for a sequence of self-maps sat-
isfying a generalized contractive condition in a generalized Menger space.

It improves and generalizes the result of Milovanovic-Arandelovic [2], Va-
suki [10] and Sehgal and Bharucha-Reid [8]. All the results presented in
this paper are new.

1. Introduction

Menger space is a generalization of metric spaces in which the distances
between points are specified by probability distributions rather than numbers.
The general notion was introduced by Menger [6] in 1942 and has been devel-
oped by a number of authors. Schweizer and Sklar [7], studied this concept and
gave some fundamental results on this space. It has been observed by many
authors that a contraction in metric space may be exactly translated into a
probabilistic metric space endowed with the min. norm. In [8] Sehgal and
Bharucha-Reid established Banach contraction principle in a complete Menger
space, which is a milestone in developing fixed point theory in a Menger space.

Recently, Jungck and Rhoades [5] termed a pair of self-maps to be coinci-
dentally commuting or equivalently weak compatible if they commute at their
coincidence points. Precisely, commuting implies weak compatibility. But it is
to be observed here (in Example 1) that a weak compatible pair needs not to
be commuting in a Menger space.

In this paper we establish a unique common fixed point theorem for a se-
quence of self-maps and an other self-map through weak compatibility satis-
fying a new generalized contractive condition in a generalized menger space,
which generalizes and improves the results of [2], [8] and [10].
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2. Preliminaries

Definition 1 ([9]). A mapping F : R → R+ is called a distribution if it is
non-decreasing left continuous with

inf{F (t) : t ∈ R} = 0 and sup{F (t) : t ∈ R} = 1.

We shall denote by L the set of all distribution functions while H will always
denote the specific distribution function defined by

H(t) =
{

0, t ≤ 0,
1, t > 0.

Definition 2. A probabilistic metric space (PM-space) is an ordered pair
(X,F ), where X is an abstract set of elements and F : X × X → L, de-
fined by (p, q) 7−→ Fp,q, where L is the set of all distribution functions i.e.
L = {Fp,q|p, q ∈ X}, if the functions Fp,q satisfy:

(a) Fp,q(x) = 1, for all x > 0 , if and only if p = q;
(b) Fp,q(0) = 0;
(c) Fp,q = Fq,p;
(d) If Fp,q(x) = 1 and Fq,r(y) = 1 then Fp,r(x + y) = 1.

Definition 3 ([9]). A mapping t : [0, 1] × [0, 1] → [0, 1] is called a t-norm if

(e) t(a, 1) = a, t(0, 0) = 0;,
(f) t(a, b) = t(b, a);
(g) t(c, d) ≥ t(a, b) for c ≥ a, d ≥ b;
(h) t(t(a, b), c) = t(a, t(b, c)),

for all a, b, c, d ∈ [0, 1].

Definition 4 ([1]). A generalized Menger space is a triplet (X,F, t) where
(X,F ) is PM-space and t is a t-norm such that for all p, q, r ∈ X and for all
x, y ≥ 0,

Fp,r(x + y) ≥ t(Fp,q(x), Fq,r(y)).

If in a generalized Menger space limt→∞ Fx,y(t) = 1 , then it is said to be a
Menger space.

Definition 5. Let (X,F, t) be a Menger space with sup 0<x<1 t(x, x) = 1. A
sequence {pn} in X is said to converge to a point p in X (written as pn → p) if
for every ϵ > 0 and λ > 0,∃ an integer M(ϵ, λ) such that Fpn,p(ϵ) > 1−λ,∀n ≥
M(ϵ, λ). Further, the sequence is said to be a Cauchy sequence if for each ϵ > 0
and λ > 0,∃ an integer M(ϵ, λ) such that Fpn,pm(ϵ) > 1 − λ,∀n,m ≥ M(ϵ, λ).
A Menger space (X,F, t) is said to be complete if every Cauchy sequence in it
converges to a point of it.

A complete metric space can be treated as a complete Menger space in the
following way:
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Proposition 6 ([7]). If (X, d) is a metric space then the metric d induces a
map from X × X → L, defined by Fp,q(x) = H(x − d(p, q)), for all p, q ∈ X
and x ∈ R. Further, if the t-norm t : [0, 1 × [0, 1] → [0, 1] is defined by
t(a, b) = min{a, b}, then (X,F, t) is a Menger space. It is complete if (X, d) is
complete.

The space (X,F, t) so obtained is called induced Menger space.

In the following TM will denote the minimum t-norm.

Definition 7 ([5]). Self mappings A and S of a Menger space (X,F, t) are
said to be weak compatible if they commute at their coincidence points, i.e.,
Ax = Sx for some x ∈ X implies ASx = SAx.

In the following example, self maps A and S are weak compatible but they
are non-commuting.

Example 8. Let (X, d) be a metric space, where X = [0, 2] and (X,F, t) be the
induced Menger space with Fp,q(ϵ) = H(ϵ − d(p, q)),∀p, q ∈ X and ϵ > 0. Let
I be the identity map on X. Define self maps A and S as follows;

A(x) =
{

2 − x, x ∈ [0, 1),
2, x ∈ [1, 2], S(x) =

{
x, x ∈ [0, 1),
2, , x ∈ [1, 2].

Now AS(1/2) = 3/2 and SA(1/2) = 2. Hence AS(1/2) ̸= SA(1/2) Thus (A, S)
is non-commuting. Also the set of coincident points of A and S is [1, 2]. Now
for any x ∈ [1, 2], Ax = Sx = 2 and AS(x) = A(2) = 2 = S(2) = SA(x). Thus
maps A and S are weak compatible though they are non-commuting.

3. MAIN RESULTS

Theorem 9. Let {An} be a sequence of self-maps and S be a self-map of
generalized complete Menger space (X,F, TM ) satisfying:
(3.11) An(X) ⊆ S(X), for all n;
(3.12) pairs (An, S) are weak compatible, for all n.
(3.13) S(X) is complete;
(3.14) there exists k ∈ [0, 1) such that for each pair (Ai, Aj) , for all x, y ∈ X,
and for all t > 0,

F 2
Aix,Ajy(kt) ≥ min


F 2

Aix,Sx(t), F 2
Sy,Ajy(t), F 2

Sx,Sy(t),
FAjy,Sx(2t)FAix,Sy(t), FAjy,Sx(2t)FAix,Sx(t),
FAjy,Sx(2t)FSx,Sy(t), FAjy,Sx(2t)FAjy,Sy(t)

 .

Then for any x0 ∈ X, the sequence {xn} defined by xn = Anxn−1, for all n, is
convergent and its limit is the unique common fixed point for all An and S.

Proof. : Define sequences {xn} and {yn} in X by Anxn−1 = Sxn = yn, for
n = 0, 1, 2... First we prove that {yn} is a Cauchy sequence in X. Putting
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x = xn−1, y = xn for the pair (An, An+1) in (3.14) we have,

F 2
yn, yn+1

(kt)

= FAnxn−1,An+1xn
(kt)

≥ min

{
F 2

Anxn−1,Sxn−1
(t), F 2

Sxn,An+1xn
(t), F 2

Sxn−1,Sxn
(t),

FAn+1xn,Sxn−1 (2t)FAnxn−1,Sxn (t), FAn+1xn,Sxn−1 (2t)FAnxn−1,Sxn−1 (t),

FAn+1xn,Sxn−1 (2t)FSxn−1,Sxn (t), FAn+1xn,Sxn−1 (2t)FAn+1xn,Sxn (t)

}

= min


F 2

yn−1,yn
(t), F 2

yn,yn+1
(t), F 2

yn−1,yn
(t),

Fyn+1,yn−1(2t)Fyn,yn(t), Fyn+1,yn−1(2t)Fyn,yn+1(t),
Fyn+1,yn−1(2t)Fyn,yn−1(t), Fyn+1,yn−1(2t)Fyn,yn+1(t)


≥ min

{
F 2

yn−1,yn
(t), F 2

yn,yn+1
(t), F 2

yn−1,yn
(t)

}
.

As

Fyn+1,yn−1(2t) ≥ min{Fyn−1,yn(t), F 2
yn, yn+1(t) ≥ min{F 2

yn−1,yn
(t), F 2

yn,yn+1(t) },
Fyn+1,yn−1(2t)Fyn,yn+1(t) ≥ min{F 2

yn,yn+1(t)
, Fyn−1,yn−1(t), Fyn,yn+1(t)}

and

Fyn+1,yn−1(2t)Fyn,yn−1(t) ≥ min{F 2
yn−1,yn

(t), Fyn−1,yn(t), Fyn,yn+1(t)}.
Thus

F 2
yn,yn+1

(kt) ≥ min{F 2
yn−1,yn

(t), F 2
yn,yn+1

(t)}
≥ min{F 2

yn−1,yn
(t), F 2

yn,yn+1
(t/k)},

...

≥ min{F 2
yn−1,yn

(t), F 2
yn,yn+1

(t/km)}
Taking limit as m → ∞ , we get

F 2
yn,yn+1

(kt) ≥ F 2
yn−1,yn

(t), for all t > 0.

Hence

F 2
yn,yn+1

(t) = 1,∀t > 0. (1)

Again
Fyn,yn+2(t) ≥ T{Fyn, yn+1(t/2), Fyn+1, yn+2(t/2)}

implies
lim

n→∞
Fyn,yn+2 = 1, in view of (1).

Also
Fyn,yn+3(t) ≥ T{Fyn, yn+2(t/2), Fyn+2, yn+3(t/2)}

implies
lim

n→∞
Fyn,yn+3 = 1.

Proceeding successively we have,

lim
n→∞

Fyn,yn+p = 1.
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Thus {yn} is a Cauchy sequence in S(X). Hence {yn} = {Sxn} → u ∈ S(X).
As S(X) is complete, there exists v ∈ X such that

u = Sv. (2)

Step I: For m ∈ N, taking x = xn−1 and y = v in (3.14) for the pair
(An, Am) and using (2) we get,

F 2
Anxn−1,Amv(kt)

≥ min


F 2

Anxn−1,Sxn−1
(t), F 2

Sv,Amv(t), F 2
Sxn−1,Sv(t),

FAmv,Sxn−1(2t)FAmv,Sxn−1(t), FAmv,Sxn−1(2t)FSxn−1,Sv(t),
FAmv,Sxn−1(2t)FAmv,Sv(t)


i.e.

F 2
yn,Amv(kt) ≥ min


F 2

yn−1,yn
(t), F 2

u,Amv(t), F 2
yn−1,u(t),

FAmv,yn−1(2t)Fu,yn(t), FAmv,yn−1(2t)Fyn−1,u(t),
FAmv,yn−1(2t)Fu,yn−1(t), FAmv,yn−1(2t)FAmv,u(t)


Taking limit as n → ∞, we get,

F 2
u,Amv(kt)

≥ min
{

F 2
u,u(t), F 2

u,Amv(t), F 2
u,u(t), FAmv,u(2t)Fu,u(t),

FAmv,u(2t)Fu,u(t), FAmv,u(2t)Fu,u(t), FAmv,u(2t)FAmv,u(t)

}
= min{1, F 2

u,Amv(t), 1, FAmv,u(2t), FAmv,u(2t), FAmv,u(2t)(t),

FAmv,u(2t)FAmv,u(t)}
≥ F 2

u,Amv(t); ∀t > 0

implies
F 2

u,Amv(kt) ≥ Fu,Amv(t),∀t > 0,

which gives Amv = u. Thus, Amv = u = Sv. As (Am, S) is weak compatible
we have,

Amu = Su, ∀m. (3)

Step II: Again putting x = xn−1 and y = u in (3.14) for the pair (An, Am)
and using (3) we get

F 2
Anxn−1,Amu(kt)

≥ min

{
F 2

yn−1,Sxn−1
(t), F 2

Su,Amu(t), F 2
Sxn−1,Su(t),

FAmu,Sxn−1 (2t)FAnxn−1,Su(t), FAmu,Sxn−1 (2t)FAnxn−1,Sxn−1 (t),

FAmu,Sxn−1 (2t)FSxn−1,Su(t), FAmu,Sxn−1 (2t)FAmu,Su(t)

}
,

and

F 2
yn,Su(kt) ≥ min


F 2

yn,yn−1
(t), F 2

Su,Su(t), F 2
yn−1,Su(t),

FSu,yn−1(2t)Fyn,Su(t), FSu,yn−1(2t)Fyn−1,yn(t),
FSu,yn−1(2t)Fyn−1,Su(t), FSu,yn−1(2t)FSu,Su(t)

 .
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Taking limit as n → ∞ we get

F 2
u,Su(kt) ≥ min

{
1, 1, F 2

u,Su(t), FSu,u(2t)Fu,Su(t),
FSu,u(2t), FSu,u(2t)Fu,Su(t), FSu,u(2t)

}
= min{F 2

u,Su(t), FSu,u(2t)Fu,Su(t), FSu,u(2t)}
= F 2

u,Su(t),

which implies Fu,Su(kt) ≥ FSu,u(t), for all t > 0, which gives Su = u. Thus,
Amu = Su = u and we get that u is a common fixed point of the sequence of
self-maps {An} and S.

Uniqueness: Let z be another common fixed point of the sequence of self-
maps {An} and S. Then, z = Amz = Sz, for all m. Putting x = z and y = u
in (3.14) for the pair (A1, A2) we get,

F 2
A1z,A2u(kt) ≥ min


F 2

A1z,Sz(t), F
2
Su,A2u(t), F 2

Sz,Su(t),
FA2u,Sz(2t)FA1z,Su(t), FA2u,Sz(2t)FA1z,Sz(t),
FA2u,Sz(2t)FSz,Su(t), FA2u,Sz(2t)FA2u,Su(t)


= min{1, 1, F 2

z,u(t), Fu,z(2t)Fz,u(t), Fu,z(2t)}
= F 2

z,u(t)

i. e.
Fz,u(kt) ≥ Fz,u(t), for all t > 0,

which gives
Fz,u(t) = 1, for all t > 0.

Hence u = z. Therefore u is the unique common fixed point of the sequence of
self-maps {An} and S. ¤

Again we note that for a, b ∈ [0, 1] we have either ab ≥ a2 or ab ≥ b2. Hence
ab ≥ min{a2, b2}. Thus for a, b, c ∈ [0, 1] we have

ab ≥ min{a2, b2}, bc ≥ min{b2, c2}, and ac ≥ min{a2, c2}.

It gives
min{ab, bc, ca} ≥ min{a2, b2, c2}.

Therefore,

min
{
FAix,Sx(t)FSx,Sy(t), FSx,Sy(t)FAjy,Sy(t), FAjy,Sy(t)FAix,Sx(t)

}
≥ min{F 2

Aix,Sx(t), F 2
Ajy,Sy(t), F 2

Sx,Sy(t)}.

Thus from Theorem 9, it follows that

Corollary 10. Let {An} be a sequence of self-maps and S be a self-map of a
complete Menger space (X,F, TM ) satisfying (3.11), (3.12), (3.13) and
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(3.21) for all i, j for all x ∈ X and ∀t > 0, there exists k ∈ (0, 1) such that

F 2
Aix,Ajy(kt)

≥ min

 FAix,Sx(t)FSx,Sy(t), FSx,Sy(t).FAjy,Sy(t), FAjy,Sy(t)FAix,Sx(t),
FAjy,Sx(2t)FAix,Sy(t), FAjy,Sx(2t)FAix,Sx(t),
FAjy,Sx(2t)FSx,Sy(t), FAjy,Sx(2t)FAjy,Sy(t)

 .

Then for any x0 ∈ X, the sequence {xn} defined by xn = Anxn−1, for all n, is
convergent and its limit is the unique common fixed point for all An and S.

Taking S to be a surjective map in Corollary 10, we get

Corollary 11. Let {An} be a sequence of self-maps and S be a surjective self-
map of a complete generalized Menger space (X,F, TM ) satisfying (3.12) and
(3.21). Then for any x0 ∈ X, the sequence {xn} defined by xn = Anxn−1, for
all n, is convergent and its limit is the unique common fixed point for all An

and S.

Taking S to be an identity map in Corollary 11, we get

Corollary 12. Let {An} be a sequence of self-maps of a complete generalized
Menger space (X,F,min) satisfying
(3.41) for all i, j, for all x ∈ X and ∀t > 0, there exists k ∈ (0, 1) such that,

F 2
Aix,Ajy(kt)

≥ min

 FAix,x(t)Fx,y(t), Fx,y(t).FAjy,y(t), FAjy,y(t)FAix,x(t),
FAjy,x(2t)FAix,y(t), FAjy,x(2t)FAix,x(t),
FAjy,x(2t)Fx,y(t), FAjy,x(2t)FAjy,y(t)

 .

Then for any x0 ∈ X, the sequence {xn} defined by xn = Anxn−1, for all n, is
convergent and its limit is the unique common fixed point of all An.

In [10] Vasuki proved the following result:

Theorem ([10]). Let {An} be a sequence of self-maps of a complete Menger
space (X,F, t) into itself with t(x, y) = min{x, y}, for every x, y ∈ [0, 1]. If for
any two maps Ai and Aj the following inequality

F 2
Aix,Ajy(kt) ≥ min

{
FAix,x(t)Fx,y(t), Fx,y(t).FAjy,y(t),
FAjy,y(t)FAix,x(t), FAjy,x(2t)FAix,y(t)

}
.

holds for all x, y ∈ X, where 0 ≤ k < 1, then for any x0 ∈ X, the sequence
{xn} defined by xn = Anxn−1, for all n, is convergent and its limit is the unique
common fixed point for all An.

Remark 13. The quoted result of [10] follows from Corollary 12. Moreover, the
contractive condition of our corollary is more general. Thus all the results of
this paper from Theorem 9 to Corollary 12 are the successive betterments of
the result of [10].
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Taking S to be a surjective self-map in Theorem 9, we obtain the following
result:

Corollary 14. Let {An} be a sequence of self-maps and S be a surjective self-
map of a complete generalized Menger space (X,F, TM ) satisfying (3.14) and
(3.21). Then for any x0 ∈ X, the sequence {xn} defined by xn = Anxn−1, for
all n, is convergent and its limit is the unique common fixed point of all An

and S.

In [2] Milovanovic-Arandelovic established the following result:

Theorem ([2]). Let {Tn} be a sequence of self-mappings of a complete Menger
space (X,F, t) and S : X → X be a continuous mapping such that Tn(X) ⊆
S(X) and S is commuting with each Tn. Let t(r, s) = min{r, s}, for every
r, s ∈ [0, 1]. Suppose that there exists a constant k ∈ [0, 1) such that for any
two maps Ti and Tj and for every x, y ∈ X,

F 2
Tix,Tjy(kt) ≥ min

{
F 2

Tix,Sx(t), F 2
Sy,Tjy(t), F 2

Sx,Sy(t),
FTjy,Sx(2t)FTix,Sy(t), FTjy,Sx(2t)FTix,Sx(t)

}
holds for all t > 0, then there exists a unique common fixed point for all Ti and
S.

Remark 15. Corollary 14 supplements and generalizes the above result of [2].
It stresses that if S is a surjective map its continuity is not required to prove
the result for even a more general contraction. In addition, In that case the
commutativity of the pairs (Ti, S) also was reduced to their weak compatibility
only.

Theorem 9 is an important alternate result for the quoted result of [2],
through weak compatibility without assuming the continuity of the map S and
commutativity of the pairs (An, S) and still having a more general contraction.

Taking S to be an identity map in Corollary 14, we get

Corollary 16. Let {An} be a sequence of self-maps of a generalized complete
generalized Menger space (X,F, TM ) satisfying

(3.81) there exists k ∈ [0, 1)such that for all i, j, for all x, y ∈ X, for all t > 0,

F 2
Aix,Ajy(kt) ≥ min


F 2

Aix,x(t), F 2
y,Ajy(t), F 2

x,y(t),
FAjy,x(2t)FAix,y(t), FAjy,x(2t)FAix,x(t),
FAjy,x(2t)Fx,y(t), FAjy,x(2t)FAjy,y(t)

 .

Then for any x0 ∈ X, the sequence {xn} defined by xn = Anxn−1, for all n, is
convergent and its limit is the unique common fixed point for all An.

The study of fixed point in theory of PM-space was started by V. M. Sehgal
and A. T. Bharucha-Reid in [8]. The following definition and theorem appeared
in their paper.
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Definition ([8]). A mapping f of a PM-space (X,F ) into itself is a contraction
if there exist 0 < k < 1 such that for each x and y in X,

Ffx,fy(kt) ≥ Fx,y(t), for all t > 0.

Theorem ([8]). Let (X,F, t) be a complete Menger space where t(a, b) =
min{a, b}. If f is any contraction, there exists a unique p ∈ X such that
f(p) = p. Moreover, limn→∞ fn(q) = p for each q in X.

We obtain the following more complete result with a more general contractive
condition from our Corollary 16.

Theorem 17. Let f be a self-map of a complete generalized Menger space
(X,F, TM ) satisfying

(3.91) there exists k ∈ [0, 1) such that for x, y ∈ X, ∀t > 0

F 2
fx,fy(kt) ≥ min


F 2

fx,x(t), F 2
fy,y(t), F 2

x,y(t),
Ffy,x(2t)Ffx,y(t), Ffy,x(2t)Ffx,x(t),
Ffy,x(2t)Fx,y(t), Ffy,x(2t)Ffy,y(t)

 .

Then there exists a unique p ∈ X such that f(p) = p. Moreover, limn→∞ fn(q) =
p, for all n, for each q in X.

Proof. The result follows from Corollary 16 by taking An = f, for all n, as
xn = fn(x0) there. ¤

Remark 18. Restricting the contractive condition of Theorem 17 to the third
factor only, the quoted result of [8] follows.
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