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A SELECTION THEOREM AND ITS APPLICATION

GUE MYUNG LEE, Do SanGg KM,
BYUNG S00 LEE AND SUNG JIN CHO

ABSTRACT. In this paper, we give equivalent forms of the selection the-
orem of Ding-Kim-Tan. As applications of the selection theorem of
Ding-Kim-Tan, we obtain a fixed point theroem of Gale and Mas-Colell
type and establish an equilibrium existence theorem for a qualitative
game under suitable assumptions in a locally convex Hausdorff topolog-
ical vector space.

1. Introduction

Selection theorem was firstly proved by Michael [9]. This theorem
plays very important roles in nonlinear analysis [1,7,8,9,10,11].

Yannelis-Prabhakar [11] proved another selection theorem and ob-
tained a fixed point theorem on the paracompact setting. Using their
fixed point theorem, they proved an equilibrium existence theorem for a
compact abstract economy.

Recently, Tarafdar [10] proved some selection theorem and obtained a
fixed point theorem on an H-space under the compact assumption. He
considered the abstract economy in which the commodity space is an
H-space and proved by means of his fixed peint theorem the existence
of equilibrium points of such abstract economies. The H-space is a
topological space equipped with the family of its nonempty contractible
subsets. The conception of the H-space was firstly considered by Horvath
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[6]. Ding-Kim-Tan {1} gave an improved version of the selection theorem
of Yannelis-Prabhakar [11] and a fixed point theorem on the paracompact
setting. As applications of their fixed point theorem, they obtained new
equilibrium existence theorems.

In this note, motivated by recent results in [1,10], we give equivalent
forms of the selection theorem of Ding-Kim-Tan [1]. As applications
of this selection theorem, we obtain a fixed point theorem of Gale and
Mas-Colell [3] type and establish an equilibrium existence theorem for a
qualitative game under suitable assumptions in a locally convex Haus-
dorff topological vector space.

2. A selection theorem

First, we give the relationships among several kinds of correspon-
dences.

PROPOSITION 2.1. Let X,Y be topological spaces and T : X — 2V
a correspondence.

(a) T has an open graph, i.e., graph T := {(z,y): y € T(x)} is open
mX xY.

(b) T has open lower sections, ie., for each y € Y, T 1(y) :=
{r € X :yeT(x)} isopenin X.

(c) for each y € Y with T~ (y) # @, there exists a nonempty open
subset O, of X such that O, C T (y).

(d) T is lower semicontinuous, i.e., for any ¢ € X and any open sub-
set G of Y with T(x)NG # 8, there exists an open neighborhood
N(z) of x in X such that for each z € N(z), T(z)NG # §.

Then we have

(1) (a) implies (b), (b) implies (c¢) and (b) implies (d).
(2) (¢) does not imply (b).

(3) (¢) does not imply (d).

(4) (d) does not imply (c).

PROOF. (1) It is clear that (a) implies (b), and (b) implies (¢). By
Proposition 4.1 in [11], we can see that (b) implies (d.
(2) Define a correspondence T : R — 2R by for any ¢ € R, T(z) =
[z,z + 1]. Then (c) holds for T but (b) does not hold for T.
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(3) Define a correspondence T : R — 2R by

(0,1] if 2] < 1
T(r)=1<¢ {1} ifz=+1
{0} if|z|> 1.

Then (c) holds for T but (d) does not Lold for 7.
(4) Define a correspondence T : R — 2R by for any € R, T(z) = {2%}.
Then (d) holds for T but (¢) does not hold for T.

Our results of this paper are mainly concerned with the condition (c¢).

The following is the selection theorem of Ding-Kim-Tan [1], which
generalizes one of Yannelis-Prabhakar [11, Theorem 3.1].

THEOREM 2.1. Let X bea nonempty paracompact subset of a Hans-
dorff topological space and Y a nonempty convex subset of a Hausdorff
topological vecotr space. Suppose that S, T : X — 2Y are correspon-
dences such that

(1) for each x € X, coS(a) C T(z) and S x) # 0, where coS(z) is

the convex hull of the set S (x),

(2) foreachy € Y, S~ y) is open in X.

Then T has a continuous selection, i.e., there exists a continuous function

f: X — Y such that for cach z € X . flzye Tix).
Now we give an equivalent form of Theorem 2.1 as follows;

THEOREM 2.2. Let X he a nonempty paracompact subset of a Haus-
dorff topological space and Y a nonempty convex subset of a Hausdorff
topological vector space. Suppose that S, T : X — 2Y are correspon-
dences such that

(1) for each v € X, coS(x) C T(x) and S(a) #0,

(2) for each y € Y with S “Ny) # 0. there exists a nonempty open

subset O, of X such that O, C S7(y),

3) Jo, = X.

Then T has a continuous selection.

Now we prove the equivalence between Theorem 2.1 and Theorem 2.2;
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(1) It is obvious that Theorem 2.2 implies Theorem 2.1.

(2) Now we prove that Theorem 2.1 implies Theorem 2.2. By using
the O, in condition ( 2) of Theorem 2.2, we define a correspondence Sy :
X —>2Yby Sy(z)={yeY: z€0, C S !(y)}. Then by conditions
(2) and (3) of Theorem 2.2, So(z) # O for all z € X. If y € So(x),
then z € O, C S~ !(y) and hence y € S(z). Thus, by condition (1) of
Theorem 2.2, we have for each z € X, coSo(z) C coS(z) C T(z), i.e., for
each z € X, coSo(z) C T(x). If w € S5 (y), then y € So(w) and thus
w € Oy C S™Hy). If 2 € Oy, then y € So(z). Hence for any = € Oy,
z € 57 (y). Thus w € O, C S5 '(y). Therefore for each y € Y, S5 (y)
is open. Hence all conditions of Theorem 2.1 are satisfied. By Theorem
2.1, T has a continuous selection. Hence Theorem 2.1 implies Theorem
2.2,

Now we give another equivalent form of Theorem 2.1 as follows;

THEOREM 2.3. Let X be a nonempty paracompact subset of a Haus-
dorff topological space and Y a nonempty convex subset of a Hausdorff
topological vector space. Suppose that T : X — 2Y is a correspondence
such that

(1) for each z € X, T(x) is a nonempty convex subset of Y,

(2) for each y € Y, T~ (y) contains an open subset O, of X (O,

may be empty for some y),

3) U0y =X.

Then T has a continuous selection.

Now we prove the equivalence between Theorem 2.1 and Theorem 2.3;

(1) We will prove that Theorem 2.3 implies Theorem 2.1. Suppose
that all the asumptions of Theorem 2.1 hold. Let O, = S~ !(y) for any
y € Y. Then O, is open for any y € Y. Since S7!(y) C (coS) ! {y) :=
{r € X:y€coS(z)} and X = |JS Hy), O, C (c6S) ! (y) and X =
JUO,. By Theorem 2.3, coS has a continuous selection. Since for each
z € X, coS(z) C T(z), T has a continuous selection. Hence Theorem
2.3 implies Theorem 2.1.

(2) It is obvious that Theorem 2.2 implies Theorem 2.3. Since Theo-
rem 2.1 implies Theorem 2.2, Theorem 2.1 implies Theorem 2.3.

REMARK. Recently, Tarafdar [10] proved that if X is a compact

. » 7 3
topological space, Y is an H-space and T : X — 2Y is a correspon-
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dence, then T has a continuous selection under the assumption: for each
r € X, T(z) is a nonempty H-convex subset of ¥, and the conditions
(2) and (3) of Theorem 2.3.

EXAMPLE 2.1. Let X = [~2,2] and Y = R. Define correspondences
S,T:X —2Y by

{0} if [-2,-1] or [1,2]
{0JU(-22 -1, 1] if -1<z< -1
(x) (0,1] if -1<z<d

{0yUR2-1,1] if t<z<1

and .
T(z) = { (0, 1] ff lz] <1
{0} if [-2,-1) a1 (1,2],

respectively.

Then all the assumptions of Theorem 2.1 or Theorem 2.2 are satisfied,
and hence T has a continuous selection. Of course, all the assumptions
of Theorem 2.3 are satisfied, and hence we know that T has a continuous
selection. Since T™!(y) is not open for each y € (0,1}, we can not apply
the selection theorem of Yannelis-Prabhakar [11, Theorem 3.1] to the
above example.

It is worth noticing that S does not have a continuous selection.

3. Existence of equilibria

In this section. we shall give some applications of Theorem 2.1. First
we have the following fixed point theorem of Gule and Mas-Collel type
(3].

THEOREM 3.1. Let I be an (possibly infinite; index set. Let for each
te I, X, bea nonempty convex subset of a locally convex Hausdorff
topological vector space E and D; a nonempty convex compact subset
of X;. Let foreachi € I, P;: X := [Tic; Xi = 2P be a convex(possibly
empty) valued correspondence such that

(1) for each y € D, with P;™"(y) # 0, there exists a nonempty open

subset Oyi of X such that ()yi c Pyl

(2) UOy' =U{P™(y) 1y € Di. P (y) # 0}
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Let for each i € I, A; : X — 2" be a nonempty convex-valued, closed-
valued and upper semicontinuous correspondence such that for each x €
X andeachi € I, P(z) C Ai(z).Ifforeachi € I, {x € X : Pi(y) # 0} is
paracompact, then there exists & € [[;c; 4i(Z) such that for each v € I,
either Pi(z) = 0 or z; € Pi(z), where w{(Z) = ; and 7; is the projection

of X on X;.

PROOF. For each i, let U; = {z € X : Pya) # 0}. Since U; =
U0, U; is open in X. By assumptions and Theorem 2.1{(or Theorem
2.2) there exists a continuous function f; : U; — D; such that for each
z € Uy, fi(z) € Py(z). Define ¢; : X — 2P by

{ {fi(z)} ifzeU;
Yi(zr) = .
Ai(x) ifz ¢ Us.

Since U; is open, by assumptions, %; is convex-vaiued, closed-valued
and upper semicontinuous. Define v : X — 2IIP¢ by for any « € X,
(z) = [lie; ¥i(x). By Fan’s lemma [2], [[;c; Di is compact and ¥
is upper semicontinuous. Since % is convex-valued and closed-valued,
by Himmelberg’s fixed point theorem [5], there exists € X such that
€ (). For each 4, if # ¢ U,, then 7, € A;(Z) and Pi(&) = 0 ; if
€ Ui, then z; € vi(z) = {fi(z)} C Pi(z) C Ai(%). Hence there is
= Hie[ Ai(7) such that for each 7 € I, either P;(7) =0 or z; € P;(r).

8 B &l

When E = R", where R" is the n-dimensional Euclidean space, then
Theorem 3.1 reduces to the following corollary;

COROLLARY 3.1. Let I be an (possibly infinite) index set. Let for
eacht € I, X, be a nonempty convex set of R"™ and D; a nonempty convex
compact subset of X;. Let for each1 € I, P; : X := Hie[ X; = 2P he a
convex (possibly empty) valued correspondence such that

(1) for each y € D; with P;7(y) # 0, there exists a nonempty open

subset Oyi of X such that Oyi C Pl (y).

(2) U0, =U{P () 1y € Di, P (y) #0}.

Let for eachi € I, A; : X — 2P be a nonempty convex-valued, closed-
valued and upper semicontinuous correspondence such that for each x €
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X and each € X and each i € I, Pi(x) C Ai(z). Then there exists
I e Hie! A;(¥) such that for each i € I, either Pi(z) =0 or z; € Py(z).

Let I be an (possibly infinite) set of agents. For each i € I, let
its choice set X'; be a nonempty set in a topological vector space. Let
Y = Hz‘elXi' For each 7 € I, let m; : X — X, be the projection of
X on X; and for each + € X, let z; denote the projection m;(x) of X
on X;. Let P; : X — 2% be an irreflexive preference correspondence,
Le. m(x) = o, ¢ Py(x) for any 2 € X. Following [4], the collection
I =(X,, P,)l-el will be called a qualitative game. A point & € X is said
to be an equilibrium of the game T'if Pi(z) =) for all ¢ € I

From Theorem 3.1, we can obtain the following equilibrium existence
theorem for a qualitative game in a locally convex Hausdorff topological
vector space.

THEOREM 3.2, Let ' = (X}, Fi)zel be a qualitative game such that
(1) Xi is a nonempty convex subset of a locally convex Hausdorff
topological vector space and D; is a nonempty convex compact
subset of X;.
(2) P X =[], er - — 2D is a convex (possibly empty) valued
preference correspondence such that
(1) x; ¢ Pi(x) for anv x € X.
(11) for any y € D, with P.,’"l(y) # 0, there exists a nonempty
open subset (),,i of X such that ()yi C P (y).
(i) UO," = (P (y) 1y € DI, P~ hvy) # 0}
(3) the set {o € X : Pi{x) # 0} is paracompact in X.

Then I' has an equilibriun point.
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