• Title/Summary/Keyword: Fixed Point Approach,

Search Result 151, Processing Time 0.027 seconds

Observational Arc-Length Effect on Orbit Determination for Korea Pathfinder Lunar Orbiter in the Earth-Moon Transfer Phase Using a Sequential Estimation

  • Kim, Young-Rok;Song, Young-Joo
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.293-306
    • /
    • 2019
  • In this study, the observational arc-length effect on orbit determination (OD) for the Korea Pathfinder Lunar Orbiter (KPLO) in the Earth-Moon Transfer phase was investigated. For the OD, we employed a sequential estimation using the extended Kalman filter and a fixed-point smoother. The mission periods, comprised between the perigee maneuvers (PM) and the lunar orbit insertion (LOI) maneuver in a 3.5 phasing loop of the KPLO, was the primary target. The total period was divided into three phases: launch-PM1, PM1-PM3, and PM3-LOI. The Doppler and range data obtained from three tracking stations [included in the deep space network (DSN) and Korea Deep Space Antenna (KDSA)] were utilized for the OD. Six arc-length cases (24 hrs, 48 hrs, 60 hrs, 3 days, 4 days, and 5 days) were considered for the arc-length effect investigation. In order to evaluate the OD accuracy, we analyzed the position uncertainties, the precision of orbit overlaps, and the position differences between true and estimated trajectories. The maximum performance of 3-day OD approach was observed in the case of stable flight dynamics operations and robust navigation capability. This study provides a guideline for the flight dynamics operations of the KPLO in the trans-lunar phase.

Linear Regression-Based Precision Enhancement of Summed Area Table (선형 회귀분석 기반 합산영역테이블 정밀도 향상 기법)

  • Jeong, Juhyeon;Lee, Sungkil
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.11
    • /
    • pp.809-814
    • /
    • 2013
  • Summed area table (SAT) is a data structure in which the sum of pixel values in an arbitrary rectangular area can be represented by the linear combination of four pixel values. Since SAT serially accumulates the pixel values from an image corner to the other corner, a high-resolution image can yield overflow in a floating-point representation. In this paper, we present a new SAT construction technique, which accumulates only the residuals from the linearly-regressed representation of an image and thereby significantly reduces the accumulation errors. Also, we propose a method to find the integral of the linear regression in constant time using double integral. We performed experiments on the image reconstruction, and the results showed that our approach more reduces the accumulation errors than the conventional fixed-offset SAT.

Dynamic Equations of Motion and Trajectory Optimization for the Mid-Altitude Unmanned Airship Platform (중고도 무인비행선의 궤적 생성을 위한 운동방정식 유도 및 궤적 최적화)

  • Lee, Sang-Jong;Bang, Hyo-Chung;Hong, Jin-Seong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.46-55
    • /
    • 2006
  • In general, 3-dimensional point-mass equation has been widely used for the trajectory optimization of the fixed-wing aircraft and reentry vehicle. But it should be modified and represent target vehicle's own characteristics. For a lighter-than-air vehicle such as an airship, there exists different and peculiar flight characteristics compared with the aircraft. The first part of this paper is to derive the dynamic equation of motion for the mid-altitude unmanned airship and the second part is to obtain the optimal trajectories under the minimal time flight given constraints. The trajectory optimization problem is converted into the nonlinear programming problem using Sequential Quadratic Programming approach. Finally numerical solutions are presented in the last part of the paper.

Partitioned coupling strategies for fluid-structure interaction with large displacement: Explicit, implicit and semi-implicit schemes

  • He, Tao
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.423-448
    • /
    • 2015
  • In this paper the unsteady fluid-structure interaction (FSI) problems with large structural displacement are solved by partitioned solution approaches in the arbitrary Lagrangian-Eulerian finite element framework. The incompressible Navier-Stokes equations are solved by the characteristic-based split (CBS) scheme. Both a rigid body and a geometrically nonlinear solid are considered as the structural models. The latter is solved by Newton-Raphson procedure. The equation governing the structural motion is advanced by Newmark-${\beta}$ method in time. The dynamic mesh is updated by using moving submesh approach that cooperates with the ortho-semi-torsional spring analogy method. A mass source term (MST) is introduced into the CBS scheme to satisfy geometric conservation law. Three partitioned coupling strategies are developed to take FSI into account, involving the explicit, implicit and semi-implicit schemes. The semi-implicit scheme is a mixture of the explicit and implicit coupling schemes due to the fluid projection splitting. In this scheme MST is renewed for interfacial elements. Fixed-point algorithm with Aitken's ${\Delta}^2$ method is carried out to couple different solvers within the implicit and semi-implicit schemes. Flow-induced vibrations of a bridge deck and a flexible cantilever behind an obstacle are analyzed to test the performance of the proposed methods. The overall numerical results agree well with the existing data, demonstrating the validity and applicability of the present approaches.

Fast CA-CFAR Processor Design with Low Hardware Complexity (하드웨어 복잡도를 줄인 고속 CA-CFAR 프로세서 설계)

  • Hyun, Eu-Gin;Oh, Woo-Jin;Lee, Jong-Hun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.5
    • /
    • pp.123-128
    • /
    • 2011
  • In this paper, we design the CA-CFAR processor using a root-square approximation approach and a fixed-point operation to improve hardware complexity and reduce computational effort. We also propose CA-CFAR processor with multi-window, which is capable of concurrent parallel processing. The proposed architecture is synthesized and implemented into the FPGA and the performance is compared with the conventional processor designed by root-square libarary licensed by FPGA corporation.

Effective Detection of Vanishing Points Using Inverted Coordinate Image Space (반전 좌표계 영상 공간을 이용한 효과적 소실점 검출)

  • 이정화;서경석;최흥문
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.147-154
    • /
    • 2004
  • In this paper, Inverted Coordinates Image Space (ICIS) is proposed as a solution for the problem of the unbounded accumulator space in the automatic detection of the finite/infinite vanishing points in image space. Since the ICIS is based on the direct transformation from the image space, it does not lose any geometrical information from the original image and it does not require camera calibration as opposed to the Gaussian sphere based methods. Moreover, the proposed method can accurately detect both the finite and infinite vanishing points under a small fixed memory amount as opposed to the conventional image space based methods. Experiments are conducted on various real images in architectural environments to show the advantages of the proposed approach over conventional methods.

Rapid Data Allocation Technique for Multiple Memory Bank Architectures (다중 메모리 뱅크 구조를 위한 고속의 자료 할당 기법)

  • 조정훈;백윤홍;최준식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.196-198
    • /
    • 2003
  • Virtually every digital signal processors(DSPs) support on-chip multi- memory banks that allow the processor to access multiple words of data from memory in a single instruction cycle. Also, all existing fixed-point DSPs have irregular architecture of heterogeneous register which contains multiple register files that are distributed and dedicated to different sets of instructions. Although there have been several studies conducted to efficiently assign data to multi-memory banks, most of them assumed processors with relatively simple, homogeneous general-purpose resisters. Therefore, several vendor-provided compilers fer DSPs were unable to efficiently assign data to multiple data memory banks. thereby often failing to generate highly optimized code fer their machines. This paper presents an algorithm that helps the compiler to efficiently assign data to multi- memory banks. Our algorithm differs from previous work in that it assigns variables to memory banks in separate, decoupled code generation phases, instead of a single, tightly-coupled phase. The experimental results have revealed that our decoupled algorithm greatly simplifies our code generation process; thus our compiler runs extremely fast, yet generates target code that is comparable In quality to the code generated by a coupled approach

  • PDF

A Study of Juhakhae(周學海)'s Three Eum and Three Yang[三陰三陽] Field Theory (주학해(周學海)의 삼음삼양(三陰三陽) 분야설(分野說)에 관한 고찰)

  • Jang, Woo-Chang
    • Journal of Korean Medical classics
    • /
    • v.21 no.1
    • /
    • pp.153-162
    • /
    • 2008
  • Three Eum and Three Yang[三陰三陽] is a way of studying the changing of nature from a Eum(陰) and Yang(陽) point of view, Juhakhae(周學海) divides this into two dimensions. The first is the concept of dividing the exterior part of the body excluding the organ into 6 divisions as Eumyang(陰陽) of front and rear characteristic. The second is the concept of dividing the systematic bio-activity of the central organ into another 6 dimensions. The former concept is illustrated in the body as a certain meridian controlling a certain field of the body, while the latter is presented as a certain organ performing an activity of Gi(氣). Three Eum and Three Yang[三陰三陽] is not based on fixed substances. but it is a thought process model of observing the structural-functional changes of the body in disease state. Therefore, by understanding Three Eum and Three Yang[三陰三陽] of field and activity of Gi(氣) respectively and comprehensively putting these into practice, we will be able to approach the essence of the disease state in a more precise manner.

  • PDF

Buckling and forced oscillation of organic nanoplates taking the structural drag coefficient into account

  • Dao Minh Tien;Do Van Thom;Nguyen Thi Hai Van;Abdelouahed Tounsi;Phung Van Minh;Dao Nhu Mai
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.553-565
    • /
    • 2023
  • This work is the first to apply nonlocal theory and a variety of deformation plate theories to study the issue of forced vibration and buckling in organic nanoplates, where the effect of the drag parameter inside the structure has been taken into consideration. Whereas previous research on nanostructures has treated the nonlocal parameter as a fixed value, this study accounts for its effect, and finds that its value fluctuates with the thickness of each layer. This is also a new point that no works have mentioned for organic plates. On the foundation of the notion of potential movement, the equilibrium equation is derived, the buckling issue is handled using Navier's solution, and the forced oscillation problem is solved using the finite element approach. Additionally, a set of numerical examples exhibiting the forced vibration and buckling response of organic nanoplates are shown. These findings indicate that the nonlocal parameter and the drag parameter of the structure have a substantial effect on the mechanical responses of organic nanoplates.

Experimental study on new artificial reef for hydraulic stability (해조류 이식형 인공어초의 수리적 안정성에 관한 실험적 검토)

  • Shin, Bum-Shick;Chung, Hyun-Joon;Kim, Kyu-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.555-560
    • /
    • 2014
  • In Korea, quantitative growth rate of artificial reef construction is supposed to reach the peak point therefore, new approach is needed to the point of artificial reefs business. Functional reefs like shellfish reefs, recreational reefs, seaweed reefs as well as fish reefs are beneficial alternatives. This study conducted hydraulic testing to assess the stability of new types of artificial reefs (ARs) constructed to promote the growth of shellfish and seaweed. The results of this study revealed that some dimensionless design parameters affected the stability of new types of artificial reef under various wave and water depth conditions in the fixed bed condition. The findings also highlight the importance of hydraulic experiments in solving problems that have emerged in the design and construction of artificial reefs.