• Title/Summary/Keyword: Fitting Function

Search Result 550, Processing Time 0.025 seconds

A Need of Buffering Function for Full-Off Fitting on Movable Bracket using Conventional Line (기존선 가동브래킷 곡선 당김 금구의 완충기능 필요성)

  • Ahn, Young-Hoon;Kim, Chul-Su;Lee, Seung-Il
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.219-222
    • /
    • 2007
  • The Full-Off Fitting of Movable Bracket using conventional line have received a dynamic contact impact between contact wire and pantograph of electric rolling stock, so this impact cause a rapid vibration of foreword and back near the supporting point of movable bracket. The Full-Off Fitting on Movable Bracket in conventional line differs from that in high speed line. Now conventional line have required a speed up for new electric locomotive and electric car. In speed-up track and big impact place, the Full-Off Fitting and the dropper often get demage. We have done a study of buffering function to solve that problem in conventional line. We have find a need adopting buffer fitting. It is decrease a dynamic impact between contact wire and pantograph of electric rolling stock.

  • PDF

Evaluation of RVE Suitability Based on Exponential Curve Fitting of a Probability Distribution Function (확률 분포 함수의 지수 곡선 접합을 이용한 RVE 적합성 평가)

  • Chung, Sang-Yeop;Yun, Tae Sup;Han, Tong-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.425-431
    • /
    • 2010
  • The phase distribution in a multi-phase material strongly affects its material properties. Therefore, a proper method to describe the phase distribution of a material is needed. In this research, probability distribution functions, two-point correlation and lineal-path functions, are used to represent the probabilistic phase distributions of a material. The probability distribution function is calculated using a numerical method and is described as an analytical form via exponential curve fitting with three parameters. Application of analytical form of probability distribution function is investigated using two-phase polycrystalline solids and soil samples. It is confirmed that the probability distribution functions can be represented as an exponential form using curve fitting which helps identifying the applicability of a representative volume element(RVE).

An Efficient Filter Design via Optimized Rational-Function Fitting, without Similarity Transformation

  • Kahng Sung-Tek
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.3
    • /
    • pp.155-159
    • /
    • 2006
  • An efficient method is presented to design filters without the similarity transform of their coupling coefficient matrix as circuit parameters, which is very tedious due to pivoting and deciding rotation angles needed during the iterations. The transfer function of a filter is directly used for the design and its desired form is derived by the optimized rational-function fitting technique. A 3rd order coaxial lowpass filter is taken as an example to validate the proposed method.

Experimental response function of a photoelectron spectrometer

  • Moonsup Han;Shin, Hye-Yeong;S.J. Oh
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.2
    • /
    • pp.107-111
    • /
    • 1999
  • We developed the experimental function (ERF) which can be used for the numerical curve fitting analysis in photoelectron spectroscopy (PES). We selected the core-levels of Ag 3d5/2 and Au 4f7/2 to obtain the ERF from the measured core-level spectra. For the numerical fourier transformation we applied the fast transform (FFT) algorithm. we considered optical (Wiener) filtering with the FFT due to noise and used Hann window function to remedy the information leakage in frequency domain due to discrete and finite sampling of measurement. The comparison of the curve fitting results using the ERF obtained in this work and the mathematical response function with a gaussian in the conventional approach shows clearly the improvement of the curve fitting analysis.

  • PDF

New Global Curve-Fitting Method Using Frequency Response Function (주파수 전달함수를 이용한 신 포괄 곡선맞춤법)

  • Min, Cheon-Hong;Park, Han-Il;Bae, Soo-Ryong;Jeon, Jae-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.82-86
    • /
    • 2009
  • Several damping materials have been employed to reduce the vibration of structures. While it is important to estimate the damping matrix when analyzing damped composite structures using the finite element method (FEM), at present, there is no FEM program that can correctly estimate the damping matrix. In this paper, a new global curve-fitting method is proposed for identifying the system parameters of non-proportional damping structures using a frequency response function. An experimental test for a cantilever beam attached damping material was carried out to verify the performance of the method proposed in this study.

Global Fitting Functions for Kinetics of Fe-Selective Chlorination in Ilmenite and Successive Chlorination of Beneficiated TiO2 (일메나이트 중 철의 선택적 염화와 선광된 TiO2의 추가 염화반응에 대한 글로벌 피팅함수)

  • Chung, Dong-Kyu;Won, Yong Sun;Kim, Yong-Ha;Jung, Eun-Jin;Song, Duk-Yong
    • Korean Journal of Materials Research
    • /
    • v.29 no.7
    • /
    • pp.412-424
    • /
    • 2019
  • Global fitting functions for Fe-selective chlorination in ilmenite($FeTiO_2$) and successive chlorination of beneficiated $TiO_2$ are proposed and validated based on a comparison with experimental data collected from the literature. The Fe-selective chlorination reaction is expressed by the unreacted shrinking core model, which covers the diffusion-controlling step of chlorinated Fe gas that escapes through porous materials of beneficiated $TiO_2$ formed by Fe-selective chlorination, and the chemical reaction-controlling step of the surface reaction of unreacted solid ilmenite. The fitting function is applied for both chemical controlling steps of the unreacted shrinking core model. The validation shows that our fitting function is quite effective to fit with experimental data by minimum and maximum values of determination coefficients of $R^2$ as low as 0.9698 and 0.9988, respectively, for operating parameters such as temperature, $Cl_2$ pressure, carbon ratio and particle size that change comprehensively. The global fitting functions proposed in this study are expressed simply as exponential functions of chlorination rate(X) vs. time(t), and each of them are validated by a single equation for various reaction conditions. There is therefore a certain practical merit for the optimal process design and performance analysis for field engineers of chlorination reactions of ilmenite and $TiO_2$.

ORTHOGONAL DISTANCE FITTING OF ELLIPSES

  • Kim, Ik-Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.1
    • /
    • pp.121-142
    • /
    • 2002
  • We are interested in the curve fitting problems in such a way that the sum of the squares of the orthogonal distances to the given data points is minimized. Especially, the fitting an ellipse to the given data points is a problem that arises in many application areas, e.g. computer graphics, coordinate metrology, etc. In [1] the problem of fitting ellipses was considered and numerically solved with general purpose methods. In this paper we present another new ellipse fitting algorithm. Our algorithm if mainly based on the steepest descent procedure with the view of ensuring the convergence of the corresponding quadratic function Q(u) to a local minimum. Numerical examples are given.

Genetic Programming Approach to Curve Fitting of Noisy Data and Its Application In Ship Design (유전적 프로그래밍을 이용한 노이지 데이터의 Curve Fitting과 선박설계에서의 적용)

  • Lee K. H.;Yeun Y S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.3
    • /
    • pp.183-191
    • /
    • 2004
  • This paper deals with smooth curve fitting of data corrupt by noise. Most research efforts have been concentrated on employing the smoothness penalty function with the estimation of its optimal parameter in order to avoid the 'overfilling and underfitting' dilemma in noisy data fitting problems. Our approach, called DBSF(Differentiation-Based Smooth Fitting), is different from the above-mentioned method. The main idea is that optimal functions approximately estimating the derivative of noisy curve data are generated first using genetic programming, and then their integral values are evaluated and used to recover the original curve form. To show the effectiveness of this approach, DBSP is demonstrated by presenting two illustrative examples and the application of estimating the principal dimensions of bulk cargo ships in the conceptual design stage.

Modal Parameter Identification from Frequency Response Functions Using Legendre Polynomials (Legendre 다항식을 이용한 주파수 응답 함수의 곡선접합과 모드 매개변수 규명)

  • Park, Nam-Gyu;Jeon, Sang-Youn;Suh, Jeong-Min;Kim, Hyeong-Koo;Jang, Young-Ki;Kim, Kyu-Tae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.7 s.112
    • /
    • pp.769-776
    • /
    • 2006
  • A measured frequency response function can be represented as a ratio of two polynomials. A curve-fitting of frequency responses with Legendre polynomialis suggested in the paper. And the suggested curve-fitting algorithm is based on the least-square error method. Since the Legendre polynomials satisfy the orthogonality condition, the curve-fitting with the polynomials results to more reliable curve-fitting than ordinary polynomial method. Though the proposed curve-fitting with Legendre polynomials cannot cover all frequency range of interest, example shows that the suggested method is quite applicable in a limited frequency band.