• 제목/요약/키워드: First-order reliability method

검색결과 441건 처리시간 0.03초

차체 기본 진동 모드를 고려한 필러 단면의 신뢰성 최적설계 (Reliability-Based Optimal Design of Pillar Sections Considering Fundamental Vibration Modes of Vehicle Body Structure)

  • 이상범;임홍재
    • 한국공작기계학회논문집
    • /
    • 제13권6호
    • /
    • pp.107-113
    • /
    • 2004
  • This paper presents the pillar section optimization technique considering the reliability of the vehicle body structure consisted of complicated thin-walled panels. The response surface method is utilized to obtain the response surface models that describe the approximate performance functions representing the system characteristics on the section properties of the pillar and on the mass and the natural frequencies of the vehicle B.I.W. The reliability-based design optimization on the pillar sections Is performed and compared with the conventional deterministic optimization. The FORM is applied for the reliability analysis of the vehicle body structure. The developed optimization system is applied to the pillar section design considering the fundamental natural frequencies of passenger car body structure. By applying the proposed RBDO technique, it can be possible to optimize the pillar sections considering the reliability that engineers require.

장애함수법에 의한 신뢰성기반 최적설계 (Barrier Function Method in Reliability Based Design Optimization)

  • 이태희;최운용;김홍선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1130-1135
    • /
    • 2003
  • The need to increase the reliability of a structural system has been significantly brought in the procedure of real designs to consider, for instance, the material properties or geometric dimensions that reveal a random or incompletely known nature. Reliability based design optimization of a real system now becomes an emerging technique to achieve reliability, robustness and safety of these problems. Finite element analysis program and the reliability analysis program are necessary to evaluate the responses and the probabilities of failure of the system, respectively. Moreover, integration of these programs is required during the procedure of reliability based design optimization. It is well known that reliability based design optimization can often have so many local minima that it cannot converge to the specified probability of failure. To overcome this problem, barrier function method in reliability based design optimization is suggested. To illustrate the proposed formulation, reliability based design optimization of a bracket is performed. AMV and FORM are employed for reliability analysis and their optimization results are compared based on the accuracy and efficiency.

  • PDF

Reliability based analysis of torsional divergence of long span suspension bridges

  • Cheng, Jin;Li, Q.S.
    • Wind and Structures
    • /
    • 제12권2호
    • /
    • pp.121-132
    • /
    • 2009
  • A systematic reliability evaluation approach for torsional divergence analysis of long span suspension bridges is proposed, consisting of the first order reliability method and a simplified torsional divergence analysis method. The proposed method was implemented in the deterministic torsional divergence analysis program SIMTDB through a new strategy involving interfacing the proposed method with SIMTDB via a freely available MATLAB software tool (FERUM). A numerical example involving a detailed computational model of a long span suspension bridge with a main span of 888 m is presented to demonstrate the applicability and merits of the proposed method and the associated software strategy. Finally, the most influential random variables on the reliability of long span suspension bridges against torsional divergence failure are identified by a sensitivity analysis.

RELIABILITY ESTIMATION AND RBDO USING KRIGING METAMODEL AND GENETIC ALGORITHM

  • 조태민;이병채
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1016-1021
    • /
    • 2008
  • In this study, effective methods for reliability estimation and reliability-based design optimization(RBDO) are proposed using kriging metamodel and genetic algorithm. In our previous study, we proposed the accurate method for reliability estimation using two-staged kriging metamodel and genetic algorithm. In this study, the possibility of applying the previously proposed method to RBDO is examined. The accuracy of that method is much improved than the first order reliability method with similar efficiency. Finally, the effective method for RBDO is proposed and applied to numerical examples. The results are compared to the existing RBDO methods and shown to be very effective and accurate.

  • PDF

우수관의 설계를 위한 신뢰성해석기법의 적용 (The application of reliability analysis for the design of storm sewer)

  • 권혁재;이경제
    • 한국수자원학회논문집
    • /
    • 제51권10호
    • /
    • pp.887-893
    • /
    • 2018
  • 본 연구에서는 신뢰성해석기법을 이용하여 우수관에 대한 최적설계기법을 제시하였다. 최근 빈번히 일어나고 있는 국지성호우에 대해 기존의 결정론적 설계기법으로는 우수관의 용량을 초과하여 도시침수가 일어나기 쉽다. 이러한 문제를 해결하기 위해서는 우수관의 설계변수들을 확률변수로 인식하는 추계학적 기법이 필요하다. 이를 위해서 본 연구에서는 FORM (First Order Reliability Method)을 사용하여 우수관의 신뢰성해석모형을 개발하였다. 개발된 신뢰성해석기법은 5개 지역의 실제 구축된 우수관에 적용하여 안전도를 분석하고 공사비증가에 따른 안전도의 변화를 분석하였다. 다섯 개 지역의 빈도별 강우강도를 분석하고 신뢰성해석을 통해 우수관의 용량초과확률을 정량적으로 산정할 수 있었다.

지하굴착지반에서의 3차원 지하수흐름에 관한 신뢰성해석 (Reliability approach to three-dimensional groundwater flow analysis in underground excavation)

  • 장연수;김홍석;박준모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.988-997
    • /
    • 2006
  • In this paper, a reliability-groundwater flow program is developed by coupling the 3-D finite element numerical groundwater flow program with first and second order reliability program. The numerical groundwater program developed called DGU-FLOW is verified by solving the examples of groundwater flow through the underground excavation and comparing the results with those of commercial MODFLOW 3D programs. Reliability routine of the program is also verified by comparing the probability of failure of the flow model from FORM/SORM with that of Monte-Carlo Simulation. The difference of out-flux and total head calculated near the bottom of the excavation using the deterministic 3D groundwater flow and the commercial programs was negligible. The reliability analysis of the groundwater flow showed that the probability of failure from the first and second order reliability method are quite close that of Monte-Carlo Simulation. Therefore, the developed program is considered effective for analyzing the groundwater flow with uncertainty in hydraulic conductivity of the soils.

  • PDF

FCM에 의한 라멘식 세그멘탈 PSC박스거더 교량의 신뢰성에 기초한 시공간 구조안전도평가 (Reliability-Based Assessment of Structural Safety of Regid-Frame-Typed Segmental PSC Box Girder Bridges Erected by the FCM during Construction)

  • 조효남;주환중;박경훈;문경호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권1호
    • /
    • pp.131-140
    • /
    • 2002
  • In this paper, a limit state model based on the analysis of structural behavior of segmental prestressed concrete box girder bridges and reliability-based safety assessment method are proposed for the bridges erected by free cantilever method. Strength limit state models for prestressed concrete box girder and rigid-frame type columns are developed for a structural safety assessment during construction. Based on the proposed limit state models, the reliability of the bridge is evaluated by using the Advanced First Order Second Moment method. The proposed model and method are applied to the Seo-Hae Grand Bridge built by FCM in order to verify its effectiveness in the safety assessment during construction of the kind of bridges. The sensitivity analyses of the main parameters are also performed in order to identify the important factors that need to be controlled for the safety of the bridges during construction.

Application of first-order reliability method in seismic loss assessment of structures with Endurance Time analysis

  • Basim, Mohammad Ch.;Estekanchi, Homayoon E.;Mahsuli, Mojtaba
    • Earthquakes and Structures
    • /
    • 제14권5호
    • /
    • pp.437-447
    • /
    • 2018
  • Computational cost is one of the major obstacles for detailed risk analysis of structures. This paper puts forward a methodology for efficient probabilistic seismic loss assessment of structures using the Endurance Time (ET) analysis and the first-order reliability method (FORM). The ET analysis efficiently yields the structural responses for a continuous range of intensities through a single response-history analysis. Taking advantage of this property of ET, FORM is employed to estimate the annual rate of exceedance for the loss components. The proposed approach is an amalgamation of two analysis approaches, ET and FORM, that significantly lower the computational costs. This makes it possible to evaluate the seismic risk of complex systems. The probability distribution of losses due to the structural and non-structural damage as well as injuries and fatalities of a prototype structure are estimated using the proposed methodology. This methodology is an alternative to the prevalent risk analysis framework of the total probability theorem. Hence, the risk estimates of the proposed approach are compared with those from the total probability theorem as a benchmark. The results indicate a satisfactory agreement between the two methods while a significantly lower computational demand for the proposed approach.

Reliability Assessment on Different Designs of a SMES System Based on the Reliability Index Approach

  • Kim, Dong-Wook;Sung, Young-Hwa;Jeung, Gi-Woo;Jung, Sang-Sik;Kim, Hong-Joon;Kim, Dong-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권1호
    • /
    • pp.46-50
    • /
    • 2012
  • The current paper presents an effective methodology for assessing the reliability of electromagnetic designs when considering uncertainties of design variables. To achieve this goal, the reliability index approach based on the first-order reliability method is adopted to deal with probabilistic constraint functions, which are expressed in terms of random design variables. The proposed method is applied to three different designs of a superconducting magnetic energy storage system that corresponds to initial, deterministic, and roust designs. The validity and efficiency of the method is investigated with reference values obtained from Monte Carlo simulation.