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Abstract 
In this study, effective methods for reliability estimation and reliability-based design optimization(RBDO) are proposed 

using kriging metamodel and genetic algorithm. In our previous study, we proposed the accurate method for reliability 

estimation using two-staged kriging metamodel and genetic algorithm. In this study, the possibility of applying the 

previously proposed method to RBDO is examined. The accuracy of that method is much improved than the first order 

reliability method with similar efficiency. Finally, the effective method for RBDO is proposed and applied to numerical 

examples. The results are compared to the existing RBDO methods and shown to be very effective and accurate. 

INTRODUCTION 

In order to improve qualities of products, it is important to design parts and systems maintaining adequate reliability. So 

far, there have been a lot of researches on estimating reliability effectively and accurately. Monte-Carlo 

simulation(MCS) is accurate method but heavy computation work is required. The first order reliability method(FORM) 

and the second order reliability method(SORM) uses linear and quadratic approximation of a limit state equation, 

respectively. FORM is accurate and efficient method when the limit state equation is linear, whereas SORM is used 

when the nonlinearity of the limit state equation is high. In addition to those method, methods using metamodel such as 

response surface method(RSM) and kriging[1] are studied. Metamodel is a surrogate of behavior of real complex 

structures and has been widely used to optimization problems[2]. Some researches have been performed on applying 

kriging metamodel to estimation of reliability[3-4].  

In the field of reliability-based design optimization(RBDO) considering the uncertainty in the optimization 

procedure, there also have been many research on it. Reliability index approach(RIA) and performance measure 

approach(PMA) based on the reliability index are mainly studied. But these methods are not effective because they have 

the double loop structure. Single loop single vector(SLSV)[5], sequential optimization and reliability 

assessment(SORA)[6], and direct decoupling approach(DDA)[7] are proposed to convert the double loop structure to 

single loop or serial loop in order to improve the efficiency. Lee and Jung[8] proposed krigng based RBDO with 

constraint boundary sampling. But, more effort is required to improve the efficiency of RBDO method in order to apply 

RBDO to large structural problems. 
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We already proposed the reliability estimation method using two-staged kriging methamodel and genetic 

algorithm in our previous study[3]. We applied the proposed method to numerical examples containing normally 

distributed random variables and the accuracy of the proposed method was also investigated. In this study, the proposed   

method is applied to problems containing variously distributed random variables and the accuracy and the efficiency are 

compared to FORM, the typical method of obtaining the reliability index, in order to check out the possibility of 

applying the method to RBDO. Finally, the effective method for RBDO is proposed and applied to numerical examples.  

RELIABILITY ESTIMATION USING KRIGING METAMODEL 

The flowchart of the previously proposed reliability estimation method is shown in Figure 1[3]. Mathematical examples 

containing variously distributed random variables are selected and shown in Equations (1)-(6). The distributional 

characteristics of the random variables are shown in Table 1.  
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The results obtained by the proposed method and FORM[9] are shown in Table 2. From the results, the 

probability of failure by the proposed method is more accurate than FORM. In a few examples, the efficiency of FORM 

is better than the proposed method, but there is substantial error in the probability of failure.  

In addition to the mathematical examples, truss problems such as the three-bar truss and the 23-bar truss shown 

in Figure 3 and 4, respectively, are tested. The vertical displacement at node 4 of the three-bar truss should be less than 

allowable displacement vmax. For the 23-bar truss, failure occurs when the vertical displacement at center node exceeds 

15mm. The mean value and coefficient of variance(COV) are shown in Table 3. COV is obtained by dividing the 

standard deviation by the mean value. The results are shown in Table 4. In case of the three-bar truss, the probability of 

failure by proposed method is almost equal to MCS. For the 23-bar truss, the number of function call by the proposed 

method is a little larger than FORM. But the proposed method is more accurate than FORM. Through the mathematical 

examples and the truss examples, it is shown that the proposed reliability estimation method is more accurate than 

FORM with similar efficiency.  
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RBDO USING KRIGING METAMODEL 

Proposed method for RBDO 

In RBDO, the design points are continuously changed as the optimization proceeds. Since kriging metamodel can 

accumulate the previously used sample points, the additional sample points should be reduced in the optimization 

procedure. The proposed method for RBDO using kriging metamodel is shown in Figure 4. First, the initial sample 

points are selected to construct kriging metamodel for each probabilistic constraint. 0, ±1s , and ±3s away axial points 

from the mean value are used as the initial sample points. So, the number of the initial sample points is 4n+1. s  

indicates the standard deviation of each design variables and n stands for the number of design variables. And then, one 

additional sample point is added continuously until the most probable point(MPP) is converged by kriging metamodel. 

MPP is obtained by inverse reliability analysis(IRA) and the additional sample point is selected from the location where 

the mean square error of kriging metamodel is maximum. The additional sampling point is obtained by genetic 

algorithm[3]. When the new design point is obtained, the accumulated sample points are selected as the initial sample 

points for the next iteration and the additional sample points are added to the kriging metamodel until the MPP is 

converged. This procedure is iterated when the convergence criteria are satisfied. 

Numerical examples and discussion 

The proposed method for RBDO is applied to numerical examples and the accuracy and the efficiency are compared to 

the existing RBDO methods such as RIA, PMA, SLSV[5], SORA[6], and DDA[7].  

Example 1 

The first numerical example[10] is shown in Equation (7). It has two random variables and probabilistic constraints.  
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The initial design point is (1.5, 35) and all random variables are statistically independent and have normal 

distribution. The optimization results are summarized in Table 5. In Table 5, MCSb i stands for the reliability of the i-th 

probabilistic constraint at the optimum and is evaluated by MCS with a ten-million sample size in order to confirm 

whether the target reliability of probabilistic constraints is satisfied. All methods result in almost same optimum and the 

evaluated reliability satisfies the target reliability. The number of function call is a summation of the number of analyses 

for the objective function and the probabilistic constraints. It is shown that RIA and PMA are not effective methods 

because of the double loop structure. SLSV, SORA, and DDA have relatively small computation work. The efficiency 

of the proposed method is the best among the compared RBDO methods. 
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Example 2 

The second example[11] is shown in Equation (8). It has two random variables and three probabilistic constraints. 

 

( )

( ) ( ) ( ) ( )

( ) ( )

1 2

2 22
1 2 1 2target target1 2

1 1 2 2

target
3 3 12

1 2

Minimize  

5 12
subject to Pr 1 0 ,  Pr 1 1 0 ,

20 30 120

80                Pr 1 0 ,  0.0 10.0  for 1, 2,   
8 5

 

b b

b

= +

é ù+ - - -é ù
= - ³ £ F - = - - - ³ £ F -ê úê ú

ê úë û ë û
é ù
ê ú= - ³ £ F - £ £ =

+ +ê úë û

f d d

x x x xx xg g

g d i
x x

( ) target target target
1 2 3                ~ ,0.3  for 1, 2,  3.0b b b= = = =i ix N d i

 (8) 

 

The initial design point is (5.0, 5.0) and all random variables are statistically independent and have normal 

distribution. The optimization results are summarized in Table 6. All methods result in almost same optimum and the 

evaluated reliability almost satisfies the target reliability. Since 3g is inactive at the optimum, the corresponding 

reliability becomes infinite. Among the various methods, the proposed method for RBDO is the most effective. Through 

the numerical examples, it is verified that the efficiency of the proposed method is much improved than the existing 

methods.  

CONCLUSIONS 

In this study, the effective and accurate methods for reliability estimation and RBDO are proposed using kriging 

metamodel and genetic algorithm. The proposed reliability estimation method is applied to problems containing 

variously distributed random variables and it is shown that the proposed method is more accurate than FORM with 

similar efficiency. The effective method for RBDO is also proposed and applied to numerical examples. The results are 

compared to the existing RBDO methods and shown to be very effective and accurate.  
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Figure 1 – Flow chart of the proposed method for 

reliability estimation 

 

Figure 2 – 3-bar truss problem 

 

Figure 3 – 23-bar truss problem 

 

 

Figure 4 – Flow chart of the proposed method for RBDO 
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Table 1 Statistical parameters of mathematical examples 

Problem Variables and statistical parameters 
Ex1 x1~N(0, 1), x2~N(0, 1) 
Ex2 x1~N(10, 5), x2~N(9.9, 5) 

Ex3 

x1~N(6070, 200), x2~N(120, 6), 
x3~N(72, 6), x4~N(170000, 4760), 
x5~N(2.3, 1/24), x6~N(2.3, 1/24), 

x7~N(0.16, 1/48), x8~N(0.26, 1/48) 

Ex4 
x1~LN(120, 12), x2~LN(120, 12), 
x3~LN(120, 12), x4~LN(120, 12), 

x5~LN(50, 15), x6~LN(40, 12) 

Ex5 x1~N(2×107,5×106), x2~N(1×10-4,2×10-3), 
x3~Gumbel(4, 1) 

Ex6 
x1~Beta(5, 5), 55.0269≤x1≤55.5531, 

x2~N(22.86,0.0043), x3~N(22.86,0.0043), 
x4~Rayleigh(0.1211), x4≥101.45  

Table 2 Reliability results of mathematical examples 

Pf (number of function call) 
Problem FORM 

(HL-RF) 
Proposed 
method MCS 

Ex1 3.365×10-3 
(15) 

3.604×10-3 
(11) 

3.627×10-3 
(1×108) 

Ex2 6.204×10-2 
(69) 

5.650×10-3 
(13) 

5.811×10-3 
(1×108) 

Ex3 8.558×10-1 
(36) 

8.745×10-1 
(49) 

8.709×10-1 
(1×106) 

Ex4 9.432×10-3 
(28) 

1.219×10-2 

(43) 
1.216×10-2 

(1×108) 

Ex5 4.468×10-4 
(28) 

6.707×10-4 
(22) 

6.690×10-4 
(1×109) 

Ex6 8.499×10-2 
(20) 

7.319×10-2 
(21) 

7.120×10-2 
(1×108)  

 

Table 3 Statistical parameters of truss problems 

Problem Variables Distribution Mean COV 
E Normal 1×107 lb/in2 0.03 

A1~A2 Normal 1.0 in2 0.02 
Y4 Normal 1.0 in 0.05 
P Normal 2×104 lb 0.10 

3-bar 
truss 

vmax Normal 1×10-3 in 0.05 
E1~E2 Lognormal 2.1×106 GPa 0.10 

A1 Lognormal 0.002 m2 0.10 
A2 Lognormal 0.001 m2 0.10 

23-bar 
truss 

P1~P6 Gumbel 50 kN 0.15  

Table 4 Reliability results of truss problems 

Pf (number of function call) 
Problem FORM 

(HL-RF) 
Proposed 
method MCS 

3-bar 
truss 

5.249×10-2 
(28) 

5.178×10-2 
(31) 

5.171×10-2 
(1×105) 

23-bar 
truss 

5.018×10-3 
(44) 

9.700×10-3 
(61) 

8.812×10-3 
(5×105)  

 
Table 5 Comparison of optimization results for 

example 1  

Method ( )*f d  * *
1 2,d d  No. of 

fun. call 
1
MCSb  2

MCSb  

RIA 37.368 2.000, 
24.802 345 4.311 3.096 

PMA 37.370 2.000, 
24.804 209 4.283 3.104 

SLSV 37.368 2.000, 
24.802 105 4.311 3.096 

SORA 37.370 2.000, 
24.803 150 4.291 3.102 

DDA 37.368 2.000, 
24.802 148 4.311 3.096 

Proposed 
method 37.373 2.000, 

24.806 67 4.311 3.109 
 

Table 6 Comparison of optimization results for           

example 2 

Method ( )*f d  * *
1 2,d d  No. of 

fun. call 
1
MCSb  2

MCSb  3
MCSb  

RIA 6.726 3.439, 
3.287 630 2.972 3.048 Infinite 

PMA 6.731 3.441, 
3.290 540 2.982 3.059 Infinite 

SLSV 6.729 3.441, 
3.287 269 2.982 3.056 Infinite 

SORA 6.726 3.439, 
3.287 348 2.972 3.048 Infinite 

DDA 6.726 3.439, 
3.287 240 2.972 3.048 Infinite 

Proposed 
method 6.726 3.439, 

3.287 139 2.972 3.048 Infinite 
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