• 제목/요약/키워드: First Order Motion

검색결과 563건 처리시간 0.031초

자유-자유보의 동적해석에 대한 섭동법의 적용 (Application of Perturbation Method to the Dynamic Analysis of Free-free Beam)

  • 곽문규
    • 한국소음진동공학회논문집
    • /
    • 제15권1호
    • /
    • pp.46-52
    • /
    • 2005
  • This paper is concerned with the application of perturbation method to the dynamic analysis of free-free beam. In general, the rigid-body motions and elastic vibrations are analyzed separately. However, the rigid-body motions cause vibrations and elastic vibrations also affect rigid-body motions in turn, which indicates that the rigid-body motions and elastic vibrations are coupled in nature. The resulting equations of motion are hybrid and nonlinear. We can discretize the equations of motion by means of admissible functions but still we have to cope with nonlinear equations. In this paper, we propose the use of perturbation method to the coupled equations of motion. The resulting equations consist of zero-order equations of motion which depict the rigid-body motions and first-order equations of motion which depict the perturbed rigid-body motions and elastic vibrations. Numerical results show the efficacy of the proposed method.

자유-자유보의 동적해석에 대한 섭동법의 적용 (Application of Perturbation Method to the Dynamic Analysis of Free-free Beam)

  • 곽문규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.300-306
    • /
    • 2004
  • This paper is concerned with the application of perturbation method to the dynamic analysis of free-free beam. In general, the rigid-body motions and elastic vibrations are analyzed separately. However, the rigid-body motions cause vibrations and elastic vibrations also affect rigid-body motions in turn, which indicates that the rigid-body motions and elastic vibrations are coupled in nature. The resulting equations of motion are hybrid and nonlinear. We can discretize the equations of motion by means of admissible functions but still we have to cope with nonlinear equations. In this paper, we propose the use of .perturbation method to the coupled equations of motion. The resulting equations consist of zero-order equations of motion which depict the rigid-body motions and first-order equations of motion which depict the perturbed rigid-body motions and elastic vibrations. Numerical results show the efficacy of the proposed method.

  • PDF

Design of Trajectory Generator for Performance Evaluation of Navigation Systems

  • Jae Hoon Son;Sang Heon Oh;Dong-Hwan Hwang
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권4호
    • /
    • pp.409-421
    • /
    • 2023
  • In order to develop navigation systems, simulators that provide navigation sensors data are required. A trajectory generator that simulates vehicle motion is needed to generate navigation sensors data in the simulator. In this paper, a trajectory generator for evaluating navigation system performance is proposed. The proposed trajectory generator consists of two parts. The first part obtains parameters from the motion scenario file whereas the second part generates position, velocity, and attitude from the parameters. In the proposed trajectory generator six degrees of freedom, halt, climb, turn, accel turn, spiral, combined, and waypoint motions are given as basic motions with parameters. These motions can be combined to generate complex trajectories of the vehicle. Maximum acceleration and jerk for linear motion and maximum angular acceleration and velocity for rotational motion are considered to generate trajectories. In order to show the usefulness of the proposed trajectory generator, trajectories were generated from motion scenario files and the results were observed. The results show that the proposed trajectory generator can accurately simulate complex vehicle motions that can be used to evaluate navigation system performance.

기준 좌표계에 따른 탄성체의 일반화 파랑 하중 및 응답에 대한 연구 (Investigation on the Generalized Hydrodynamic Force and Response of a Flexible Body at Different Reference Coordinate System)

  • 허경욱;최윤락
    • 대한조선학회논문집
    • /
    • 제58권6호
    • /
    • pp.348-357
    • /
    • 2021
  • In this paper, the generalized hydrodynamic force and response of a flexible body are calculated at different reference coordinate systems. We generalize the equation of motion for a flexible body by using the conservation of momentum (Mei et al., 2005). To obtain the equations in the generalized mode, two different reference coordinates are adopted. The first is the body-fixed coordinate system by a rigid body motion. The other is the inertial coordinate system which has been adopted for the analysis. Using the perturbation scheme in the weakly-nonlinear assumption, the equations of motion are expanded up to second-order quantities and several second-order forces are obtained. Numerical tests are conducted for the flexible barge model in head waves and the vertical bending is only considered in the hydroelastic responses. The results show that the linear response does not have the difference between the two formulations. On the other hand, second-order quantities have different values for which the rigid body motion is relatively large. However, the total summation of second-order quantities has not shown a large difference at each reference coordinate system.

움직임경계블록의 영역분할을 이용한 프레임간 내삽 (Interframe interpolation using segmentation of blocks on motion boundary)

  • 이기동;김동욱;강응관;최종수
    • 전자공학회논문지S
    • /
    • 제35S권5호
    • /
    • pp.68-74
    • /
    • 1998
  • Block-based interframe interpolation algorithms cause severe block effect because the algorithm interpolates the skipped frame by using block based motion vector. Therefore, in this paper, we propose an algorithm that reduces the block effect in the interpolated frames. First, we propose an algorithm that obtains backward motion vector by using forward motion vector received from the transmitter. In order to predict well covered and uncovered region, backward motion vector is needed as well as forward motion vector. Second, we propose the algorithm which segments the motion boundary blocks into regions and obtains the motion vector of each region from candidates that consist of the motion vectors of neighbor blocks. This algorithm makes it possible that the moving object and the background, in spite of being in the same block, have different motion vectors from each other so that the block effect can be reduced. According to the results of simulation, the proposed algorithm is superior to conventional algorithm in subjective quality a swell as in objective quality.

  • PDF

극소공기막을 갖는 공기윤활 슬라이더 베어링의 윤활해석에 관한 연구

  • 황평;양승한
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1996년도 제24회 춘계학술대회
    • /
    • pp.94-98
    • /
    • 1996
  • The static characteristics of air-lubricated slider bearing were performed using direct numerical method. The equations of motion of slider bearing are solved simultaneously with the Reynolds equation for three degrees of freedom. The molecular rarefaction effect is considered. The models implemented include the first-order slip, the second-order slip, and the Boltzmann equation model derived by Fukui and Kaneko(FK model)

  • PDF

피스톤 링갭이 링거동 및 오일소모에 미치는 영향 (Effect of Piston Ring Gap on the Axial Motion of Piston Ring and Oil Consumption)

  • 민병순;김중수;최재권
    • 한국자동차공학회논문집
    • /
    • 제5권2호
    • /
    • pp.197-204
    • /
    • 1997
  • In order to investigate the relationship between the ring gap ratio and oil consumption, the axial motion of piston ring was measured by capacitance technique. The pressures of each land and the motions of each ring were calculated by orifice-volume method in which it is assumed that the ring gaps are the only gas leakage paths. The calculated results were compared with the measured ones. Consequently, it is known that the increase of ring gap ratio has the effect of lifting the first ring. The calculated results were roughly in accordance with those measured. Therefore, it is possible to predict the effect of design variables on the pattern of ring motion. It is known that the lift off of first ring accompanied by the increase of ring gap ratio make rise of oil consumption.

  • PDF

Integrated Human and Rob-ot Ergonomics의 측면에서 로보트의 동작제어 개선에 관한 연구 (A study on the improvement of the robot motion control as a part of the integrated human and robot ergonomics)

  • 이순요;권규식;홍승권
    • 대한인간공학회지
    • /
    • 제9권1호
    • /
    • pp.21-27
    • /
    • 1990
  • Teaching Expert System/World Coordinate System(TES/WDS) was proposed to improve robot motion control. First, precise coordinate reading for getting the inherent data about position and posture of task objects was performed throgh the integrated image and fuzzy processing. Second, singularity and parameter limitation problems in getting the motion data about position and posture of robot in macro motion were solved by proposed geometric algorithm. Third, the unnecessary robot motion was also removed by the Robot Time and Motion (RTM) method and the Multi-Geometric Straight-Line Motion (MGSLM) method in micro motion. This results demonstrated reduction of the average teaching task time according to task order.

  • PDF

THE EXPANSION OF MEAN DISTANCE OF BROWNIAN MOTION ON RIEMANNIAN MANIFOLD

  • Kim, Yoon-Tae;Park, Hyun-Suk;Jeon, Jong-Woo
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.37-42
    • /
    • 2003
  • We study the asymptotic expansion in small time of the mean distance of Brownian motion on Riemannian manifolds. We compute the first four terms of the asymptotic expansion of the mean distance by using the decomposition of Laplacian into homogeneous components. This expansion can he expressed in terms of the scalar valued curvature invariants of order 2, 4, 6.

  • PDF

Numerical Analysis for Motion Response of Modular Floating Island in Waves

  • Hyo-Jin Park;Jeong-Seok Kim;Bo Woo Nam
    • 한국해양공학회지
    • /
    • 제37권1호
    • /
    • pp.8-19
    • /
    • 2023
  • In recent years, modular-type floating islands have been considered as a promising option for future ocean space utilization. A modular floating island consists of a number of standardized pontoon-type modules and connectors between them. In this study, the motion responses of a modular floating island in waves was investigated based on frequency-domain numerical analysis. The numerical method is based on the potential flow theory and adopts a higher-order boundary element method with Green's function. First, motion RAOs were directly compared with the model test data by reference to validate the present numerical method. Then, numerical investigations were conducted to analyze the motion characteristics of the floating island by considering various modules shapes and arrangements. It was found that motion responses were reduced in a single central module compared to when divided central modules were used. Finally, the effect of modular arrangement on the motion responses in irregular waves was discussed. It was confirmed that multiple-layer outer modules are more effective in calming the central module than using single-layer outer modules, except under very long period conditions.