• 제목/요약/키워드: Fire weight

Search Result 340, Processing Time 0.024 seconds

A Study on ASET(available safe egress time) for Subway Station of Light Weight Railcar Using FDS (FDS를 이용한 경량철도 지하역사의 피난허용시간 연구)

  • Kim, Chi-Hun;Lee, Duck-Hee;Jung, Woo-Sung
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.361-366
    • /
    • 2011
  • 본 연구에서는 무인운영이 예정되어 있는 경량철도 지하역사 화재 시 안전대책을 강구하기 위하여 다양한 시나리오의 화재상황을 모사하여 FDS 사용코드를 이용해 화재유동현상을 분석하였다. 해석경계조건은 전동차 내부공간을 포함한 지하 3개 층과 설계에 반영된 환기설비를 적용하였으며, 약 500만 개의 격자를 34개 블록으로 나누어 계산하였다. 비상탈출 동선을 파악하여 주요 위치에서 피난경로상의 각 층 바닥으로 부터 1 m 높이의 한계온도와 연기층의 도달시간을 시나리오 별로 분석하여 보았다.

  • PDF

A Study on Appropriateness of Performance Criteria of Smoke Control System for Underground Spaces (I) (지하공간에 대한 제연설비 성능기준의 적정성 고찰(I))

  • Ahn, Chan-Sol;Kim, Heung-Youl;Yoo, Yong-Ho;Jeon, Gyu-Yeop
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.103-106
    • /
    • 2008
  • This study is intended to evaluate the characteristics of smoke spreading and the appropriateness of evacuation time extended by operation of smoke control system during fire within the underground space of the building structured in compliance with the smoke control system performance criteria from the local fire safety standard, which has been currently applied to the buildings in Korea. Using the heat release per unit weight of the combustibles, a numerical analysis both in case of smoke control system in operation and the system not in operation was carried out at the several different shopping malls. From the viewpoint of securing the evacuation time, the results were compared in an attempt to assess the appropriateness of the fire safety criteria.

  • PDF

Fire Characteristics of Composites for Interior Panels Using Cone calorimeter (콘칼로리미터를 이용한 내장판용 복합재료의 화재특성)

  • 이철규;정우성;이덕희
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.1
    • /
    • pp.55-59
    • /
    • 2004
  • Composite materials were used widely due to merit of light weight, low maintenance cost and easy installation. But it is the cause of enormous casualties to men and properties because of weak about the fire. Particularly, it is more serious in case of subway train installed composite materials. For this reason, experimental comparison has been done fur measuring heat release rate(H.R.R) and smoke production rate(S.P.R) of interior panels of electric motor car using cone calorimeter. A high radiative heat flux of 50kW/㎡ was used to bum out all materials and to simulate the condition of fully developed fire case in the tests. It was observed that Heat Release Rate and Smoke Production Rate curves were dependent on the kinds of the interior materials. From the heat release rate curves, the sustained ignition time, peak heat release rate and total heat release rate were deduced, These data are useful in classifying the materials by calculating two parameters describing the possibility to flashover.

A Study on Light-weight Inorganic Insulation (경량 무기 단열재에 관한 연구)

  • Shin, Hyeon-Uk;Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.217-218
    • /
    • 2012
  • To prevent energy waste in buildings used heat insulator. Heat insulator materials can be classified inorganic and organic. The organic material is be toxic gas emission, when a fire occurs. And it has lower water resistance. The inorganic material is heavy and worse thermal performance than organic materials. This study focused on thermal conductivity and density of inorganic foam material for using industrial by-products materials.

  • PDF

Analysis of Forest Fire Spread Rate and Fire Intensity by a Wind Model (모형실험에 의한 풍속변화에 따른 산불의 확산속도와 강도 분석)

  • 채희문;이찬용
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.4
    • /
    • pp.213-217
    • /
    • 2003
  • Forest fire spread and intensity were modeled as a function of wind and fuel. Spread rate and intensity of forest fire were related to weight and thickness of forest fuel beds and to wind speed. Forest fire spread rate and fire intensity were differentiated according to wind speed. Rapid wind speed causes a faster forest fire spread rate and greater fire intensity than does slow wind speed. Relative burning time of the fire from beginning to end in the model was 161 sec at a wind speed of 0.5 m/sec and 146 sec at 1m/sec on the model. Average forest lire spread rate was 0.014 m/sec at a wind speed of 0.5 m/sec and 0.020 m/sec at 1m/sec. Average fire intensity was 0.183 ㎾/m at a wind speed of 0.5 m/sec, 0.259 ㎾/m at 1m/sec. Fire intensity was greater when forest fire spread rate was rapid.

Inhibitory Effect of adding Phase Change Material (PCM) to Fire Fighter Protective Clothing on Burn Injuries (Phase Change Material (PCM) 소재 적용 소방보호복의 화상발생 억제효과에 관한 연구)

  • Lee, Jun Kyoung
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.16-22
    • /
    • 2016
  • Fire fighters rely on fire fighter protective clothing (FFPC) to provide adequate protection in the various hazardous environments. To enhance its protection performance, the FFPC material must be thick and thus it is difficult to achieve weight reduction. One of the methods of overcoming this problem, the addition of phase change material (PCM) to FFPC, is a new technology. In previous studies, the researches was mostly related to the temperature characteristics of the fibers incorporating PCM, but little information is available about its effect on burn injuries. Thus, in this study, the inhibitory effects of adding PCM to FFPC on second degree burns were investigated through numerical calculations. Thermal analyses of biological tissues and FFPC with embedded PCM exposed to several fire conditions causing severe tissue damage were studied by using a finite difference method based on the Pennes bio-heat equation. FFPC with embedded PCM was found to provide significantly greater protection than conventional fire fighting clothing, because the heat of absorption due to the phase change within the material is used to limit the heat conduction of the material.

A Research of the Development Plan for a Highly Adaptable FSR (Fire Safety Robot) in the Scene of the Fire (화재현장에 적합한 소방방재로봇의 개발 방향 탐색)

  • Kim, Kook-Rae;Kim, Jin-Taek
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.113-118
    • /
    • 2010
  • FSR has been placed and operated in the Daegu Fire & Safety Department on a trial basis since September 2009. This research proposes a direction for developing the robot, which will provide greater field adaptability and efficiency through analyzing in-depth interviews and surveys of firefighters who have operated the robot. Analysis has shown that an Assistant FSR is expected to enhance maneuverability and improve the performance of wheels, which will increase the capacity for navigating obstacles. The Field FSR needs improvements in convenience of control, making the weight lighter, and stabilization of radio communications to eliminate tangled wires. Overall satisfaction regarding the performance of robots currently in operation is low, while preference toward using the Assistant robot in the field is also low, shown at 8.4%. Therefore, it is urgently necessary to vitalize usage of FSR in the field so that early commercialization of the FSR will contribute to reinforce both growth and competitiveness of the domestic robotics industry.

Estimation of Biomass of Pinus densiflora Stands Burnt Out by the 2005 Yangyang Forest Fire (2005년 양양산불 피해 소나무림의 연소량 추정)

  • Lee Byung-Doo;Chang Kwang-Min;Chung Joo-Sang;Lee Myung-Bo;Lee Si-Young;Kim Hyung-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.20 no.2
    • /
    • pp.267-273
    • /
    • 2006
  • The biomass of Pinus densiflora stands burnt out by the 2005 Yangyang forest fire was estimated based on the grades of fire severity; light, moderate and heavy. In order to measure the post-fire ground biomass in kg/ha, the ground fuels including shrub layer were collected and weighted and the crown biomass was estimated using allometric regressions and leaf area index for dry weight of P. densiflora. The pre-fire biomass was assumed to be equal to that of non-damaged P. densiflora stands having the same characteristics. The results indicated that the forest fire burnt out fuels of stands; 3,693 kg/ha in the light-damaged, 8,724 kg/ha in the moderately-damaged, and 17,451 kg/ha in the heavily-damaged forest stands.

An Experimental Study on the Fire Resistance of Composite Truss Beam (합성트러스 보의 내화성능에 관한 실험적 연구)

  • Park, Won-Sup;Kim, Heung-Youl;Kim, Hyung-Jun
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.135-141
    • /
    • 2009
  • The composite truss has been widely used for tall buildings and long-span structures in North America. As compared with other similar structures, it has merits such as reduction of construction period, low span/depth ratio, low dead weight and so on. It has the most effective trait for structures with long span of 12~18m. After collapse of WTC, the fire resistance behaviors of structures have been actively conducted under various fire conditions in several country. This study showed that the surface temperature of steel member in the composit truss beam was reached to $700^{\circ}C$ under the fire condition of a short time. Under the same condition, the temperature in concrete was within $200^{\circ}C$. The composit truss beam with 20mm bracing was collapsed by rapid deflection after about 3minutes. However, the beams with 25mm, 35mm, and 45mm bracing were not collapsed, even though those were reached to deflection standard of L/20 within 15minutes.

A Study on Performance-based Seismic Design Method of Fire Extinguishing Pipe System (소화설비 배관의 성능위주 내진설계 방법에 관한 연구)

  • Lee, Jae-Ou;Kim, Hong-Kyung;Cho, Soon-Bong
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.86-94
    • /
    • 2017
  • In the present study, a Cook Book method and a Static System Analysis method were compared with each other on the basis of a seismic design criteria of fire-fighting facilities and analyzed. The Cook Book method is analyzed by dividing a pipeline in each same section. In this method, a stress analysis is not possible except for the section analyzed in such a way that a brace is designed according to the weight of pipe, water and pipe fitting. To the contrary, in case of the Static System Analysis method, the stress analysis for the whole pipeline can be performed because the whole pipeline is regarded as a single structure. For the fatal stress values locally generated, it is necessary to actively perform a pipeline analysis by installing a device capable of locally relieving the stress of the pipeline. In Korea, only the Cook Book method is provided as the seismic design criteria of fire-fighting facilities, which causes many problems with diversification of seismic design. Thus, it is necessary to apply the seismic design method of the pipeline by using various kinds of engineered Static System Analysis methods.