DOI QR코드

DOI QR Code

Inhibitory Effect of adding Phase Change Material (PCM) to Fire Fighter Protective Clothing on Burn Injuries

Phase Change Material (PCM) 소재 적용 소방보호복의 화상발생 억제효과에 관한 연구

  • Received : 2016.04.04
  • Accepted : 2016.06.21
  • Published : 2016.06.30

Abstract

Fire fighters rely on fire fighter protective clothing (FFPC) to provide adequate protection in the various hazardous environments. To enhance its protection performance, the FFPC material must be thick and thus it is difficult to achieve weight reduction. One of the methods of overcoming this problem, the addition of phase change material (PCM) to FFPC, is a new technology. In previous studies, the researches was mostly related to the temperature characteristics of the fibers incorporating PCM, but little information is available about its effect on burn injuries. Thus, in this study, the inhibitory effects of adding PCM to FFPC on second degree burns were investigated through numerical calculations. Thermal analyses of biological tissues and FFPC with embedded PCM exposed to several fire conditions causing severe tissue damage were studied by using a finite difference method based on the Pennes bio-heat equation. FFPC with embedded PCM was found to provide significantly greater protection than conventional fire fighting clothing, because the heat of absorption due to the phase change within the material is used to limit the heat conduction of the material.

소방공무원의 화상방지를 위해 소방보호복의 개발이 이루어지고 있으나, 보호 성능을 높이기 위해서 소재의 두께가 증가하고, 그럼으로 경량화 달성이 어려워지는 단점이 존재한다. 이를 극복하기 위한 여러 가지 방법 중 Phase Change Material(PCM, 상변화 물질)을 적용한 섬유를 소방보호복 안감에 적용하는 연구가 진행되고 있다. 기존 연구의 경우, 고온노출시 PCM 적용 섬유의 온도 특성에 대한 연구가 일부 있었으나, 화상 발생과의 직접적인 연관성을 살펴볼 수가 없다는 큰 단점이 존재한다. 본 연구에서는 짧은 시간 고열유속 상태의 돌발화염조건에 대해 현재 사용되고 있는 소방보호복 안감에 대한 PCM 적용 여부에 따라 2도 화상 발생 억제 효과를 수치계산을 통해 살펴보았다. 피부의 화상 해석을 위해 생체 열전달 방정식(Bio-heat transfer)을 이용하여 지배방정식을 유도하였으며, 유한차분법(Finite Difference Method)을 활용하여 화상에 대한 예측을 수행하는 수치해석 접근법을 사용하였다. 시간에 따른 온도 및 손상함수 결과 분석을 통해 PCM 소재의 열흡수가 열전달을 지연시키는 효과가 큼을 확인할 수 있었고, 그에 의해 화상발생을 방지하는 매우 유효한 방법임을 확인할 수 있었다.

Keywords

References

  1. "A Study on Safety and Health of Injured Firefighter in 2008", National Emergency Management Agency (2008).
  2. Fire fighter Fatalities in the United States-NFPA (2014).
  3. D. C. Kim and D. S. Na, "Epidemiology of Burns in Korea", J. of Kor. Burn Society, Vol. 14, No. 1, pp. 6-11 (2011).
  4. American burn association. Burn incidence and treatment in the US: National health interview survey (2011).
  5. J. H. Veghte, "Fire Fighter's Protective Clothing: Design Criteria", 2nd Edition, Lion Apparel, Dayton (1988).
  6. J. R. Lawson, "Fire Fighter's Protective Clothing and Thermal Environments of Structural Fire Fighting", NISTIR 5804 (1996).
  7. S. Mondal, "Phase Change Materials for Smart Textiles - An Overview", Applied Thermal Engineering, Vol. 28, Issues 11-12, pp. 1536-1550 (2008). https://doi.org/10.1016/j.applthermaleng.2007.08.009
  8. Y. Shin, Y. Jeong, H. Jeon, K. Son and S. Kim, "Development of Thermoregulating Textile Materials with Microencapsulated Phase Change Materials (PCM)", J. of Kor. Soc. Clothing and Textiles, Vol. 28, No. 6, pp. 767-775 (2004).
  9. H. H. Pennes, "Analysis of Tissue and Arterial Blood Flow Temperatures in the Resting Forearm", J. of Appl. Physiology, No. 1, pp. 93-122 (1948).
  10. B. Zalba, J. M. Marin, L. F. Cabeza and H. Mehling, "Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications", Applied Thermal Eng., Vol. 23, pp. 251-283 (2003). https://doi.org/10.1016/S1359-4311(02)00192-8
  11. B. H. Pause, "New Heat Protective Garment with Phase Change Material", Performance of Protective Clothing: Issues and Priorities for the 21st Century, Vol. 7, ASTM STP 1386 (2000).
  12. F. C. Henriques and A. R. Moritz, "Studies of Thermal Injuries: The Conduction of Heat to and through Skin and the Temperatures Attained Therein. A Theoretical and Experimental Investigation", The American J. Pathology, Vol. 23, pp. 531-549 (1947).
  13. A. K. Mehta and F. C. Wong, "Measurement of Flammability and Burn Potential of Fabrics", MIT, Summary report DSR Project 73884 NSF (1973).
  14. J. K. Lee and C. H. Bang, "Numerical Study on Skin Burn Injury due to Flash Flame Exposure", J. Kor. Inst. Fire Sci. Eng., Vol. 26, No. 5, pp. 13-20 (2012). https://doi.org/10.7731/KIFSE.2012.26.5.013
  15. D. A. Torvi and J. D. Dale, "A Finite Element Model of Skin Subjected to a Flash Fire", Journal of Biomechanical Engineering, Vol. 116, pp. 250-255 (1994). https://doi.org/10.1115/1.2895727
  16. P. Chitrphiromsri and A. V. Kuznetsov, "Modeling Heat and Moisture Transport in Fire Fighter Protective Clothing During Flash Fire Exposure", Heat Mass Transfer, Vol. 41, No. 3, pp. 206-215 (2004). https://doi.org/10.1007/s00231-004-0504-x
  17. B. Zalba, J. M. Marin, L. F. Cabeza and H. Mehling, "Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications", Applied Thermal Engineering, Vol. 23, pp. 251-283 (2003). https://doi.org/10.1016/S1359-4311(02)00192-8
  18. L. K. McCarthy, "Evaluation of the Thermal Performance of Fire Fighter Protective Clothing with the Addition of Phase Change Material", Uni. Maryland, MS Thesis (2010).