• Title/Summary/Keyword: Fire test of Wall

Search Result 83, Processing Time 0.024 seconds

Experimental Study on Interaction of Water Sprayed Curtain on Hot Surface of a Window Glass and its Effects on Glass Surface Temperature in Room Fires (구획화재 시 국부복사열에 노출된 유리면의 수막접촉에 따른 급냉파열특성 관한 실험적 연구)

  • 박형주;지남용
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.124-130
    • /
    • 2003
  • This research focuses on analysis of a interaction fracture of various glasses due to contact of water sprayed curtain on hot glass surface with high temperature produced from convective heat source near glass wall. A large scaled experimental test was done in order to find the range of the glass surface temperature to be able to cause the breakage of the glasses when water droplets reach on the hot surface. This paper shows the allowable temperature of the glass surface for prevention of the cooling down breakage before water curtain droplets contact the surface. Allowable Temperature if $250^{\circ}C$ for the tempered glass but general glass is very relatively low. Therefore if the water curtain spray system was adequately activated by a thermal detector installed below ceiling adjacent glass wall with water curtain nozzle system, all hot glass would not break out by cooling water droplet's contact on the hot surface due to convective heat released by adjacent fire source near the glass wall.

A Research on Thermal Properties & Fire Resistance of A Water Film Covered Glazing System for Large Atrium Space (대규모 아트리움에 적용되는 수박형성 유리벽의 열적 특성 및 내화성능에 관한 연구)

  • 박형주;지남용
    • Fire Science and Engineering
    • /
    • v.13 no.4
    • /
    • pp.38-55
    • /
    • 1999
  • In order practically to use fire-defective glazing materials for the compartment wall where a fire-protection rating is mandated, there have been many trials internationally, This research focuses on a feasibility that, if certain water film covered all surface of glass, the glazing system can endure without breaking out under the compartment fire. First of all, a water film spray system was specially designed to wet the entire surface of the glass and also to have tiny small amount of water rebounded from the surface after emitted from nozzles. After this system has proven to have perfect performance, small-scale tests were done to find out if the water film covered glazing system react to the high temperature curve in a small furnace room. Finally, on basis of the obtained data, full-scale experiments were done so that water-film covered glazing system can pass the Korean Standard (KS) test for fire resistance, KS F2257.

  • PDF

The Effect of Photoluminescent Exit Signs in Evacuation in the Event of Failure of the Power from the Building Fire (건물화재의 정전시 축광유도표지가 피난에 미치는 영향)

  • Hur Man-Sung
    • Fire Science and Engineering
    • /
    • v.19 no.4 s.60
    • /
    • pp.69-74
    • /
    • 2005
  • This study is intended to examine the effect of photoluminescent exit signs in the event of failure of both the power to the lighting and illuminated exit sign. To achieve the purpose, the test house was exhibited in Fire EXPO '05. 520 visitors were examined from May 26-29, 2005. The results of this study are as follows; The evacuation from buildings in dark conditions showed that $70\%$ of men and $72\%$ of women were crawled along the wall. Meanwhile, $88\%$ of men and $83\%$ of women were evacuated with ordinary walking in photoluminescent exit signs. The egress time was shortened from 53 seconds to 64 seconds in accordance with age, height and visual power. The photoluminescent exit signs located on public buildings floors will aid in evacuation from buildings in the event of failure of the power to the lightings and illuminated exit signs.

Development of 150 MPa Ultra High Strength Concrete (설계강도 150 MPa 초고강도 콘크리트 개발)

  • Sohn, Yu-Shin;Kim, Han-June;Kim, Gyu-Dong;Lee, Seung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.29-32
    • /
    • 2006
  • The techniques related to ultra-high strength concrete(UHSC) became the key issue in recent days since requirements of the high-rise building which story is over than 100 gradually increases. Therefore, for the development of 150MPa UHSC this research is generally categorized by 4 parts: development of pre-mixed binders, evaluation for the fire performance of coarse aggregate, optimization of the mixture proportion, and mock-up test. Finally, based on the optimized mixture and its laboratory tests, mock-up test for wall and column specimens were carried out to simulate and evaluate the UHSC in real situation. The mechanical properties of core specimens were compared with the cylinder specimens made in laboratory. For instance, it showed the reasonable the results that the strength at the age of 91 days is 183MPa.

  • PDF

Development of 2-ton thrust-level sub-scale calorimeter (추력 2톤급 축소형 칼로리미터 개발)

  • Cho, Won-Kook;Ryu, Chul-Sung;Chung, Yong-Hyun;Lee, Kwang-Jin;Kim, Seung-Han;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.107-113
    • /
    • 2005
  • A calorimeter of 2-ton thrust level rocket engine chamber has been developed to measure the wall heat flux. The liner of the chamber is made of copper-chromium alloy to maximize the heat transfer performance and structural strength. 1-D design code based on empirical correlations has been used for the prediction of the global thermal characteristics while 3-D CFD has been applied for the verification of local cooling performance. The predicted average wall heat flux at the throat is 43 $MW/m^{2}$ for the combustion chamber pressure of 53 bar. The chamber structure is confirmed to be safe at the pressure of 150 bar through 2-D stress analysis and measurement of the strain of the test species. Finally, the test of pressurizing the calorimeter chamber has been performed with water at the pressure of 150 bar in room temperature environment. No thermal damage has been detected after the hot-fire test in the test nozzle of same cooling performance with the developed calorimeter though the measured throat heat flux is higher than the design value by 10%.

A Numerical Study on the Design of Water Mist Lance for Fire Suppression in Container (컨테이너 내부 화재진압을 위한 물분무창 설계에 관한 수치적 연구)

  • Han, Sang-goo;Choi, Jae-hyuk;Lee, Won-Ju
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.941-947
    • /
    • 2017
  • Increasing marine transportation of dangerous goods using containers causes fire accidents on ships due to leakage of dangerous materials. In IMO (MSC.93), all vessels that are to be loaded five or more containers on weather deck area after 1 January 2016 are required to have a fire extinguishing system called Water Mist Lance (WML) on board. In this study, numerical analysis is performed to design WML with optimal edge radius of curvature using LS-DYNA. The analysis results for the three models with 10 mm, 15 mm and 20 mm lengths of the edge part showed that the only model with 15 mm length penetrated the wall of the container and did not cause damage to the edge of the WML. In the future, based on the results of this study, we will make a WML of prototype and conduct a performance test. And we will continue to improve the problems.

The Effect of Photoluminescent Exit Path Markings in Evacuation from Buildings (건축물 내에서 축광유도타일이 피난에 미치는 영향)

  • Hur, Man-Sung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.3 s.18
    • /
    • pp.67-72
    • /
    • 2005
  • This study is intended to examine the effect of photoluminescent exit path markings in the event of failure of both the power and back-up power to the lighting and illuminated exit sign. To achieve the purpose, the test house was exhibited in Fire EXPO '05. 520 visitors were examined from May 26-29, 2005. The results of this study are as follows; The evacuation from buildings in dark conditions showed that 70% of men and 72% of women were crawled along the wall. Meanwhile, 88% of men and 83% of women were evacuated with ordinary walking in photoluminescent exit path markings. The photoluminescent exit path markings located on public buildings floors will aid in evacuation from buildings in the event of failure of the power to the lightings and illuminated exit signs.

Development of Semi-Incombustible Composite Insulating Board Containing Pine Leaf Powder and Vermiculite (송엽분과 질석을 포함한 준불연 단열복합보드의 개발)

  • Cheong, Chang Heon;Yoo, Seok Hyung
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.27-34
    • /
    • 2018
  • A Semi-Incombustible Composite Insulation Board (SICIB) that can be applied to building construction and ships was developed. The SICIBs comprised of pine leaf powder, vermiculite. The incombustibility, semi-incombustibility, and U-factor of the developed SICIBs were measured. The incombustibility of the each SICIB was determined by the proportion of combustible flexible binder and pine leaf powder. SICIB satisfied the incombustibility test without a combustible flexible binder and pine leaf powder. In addition, SICIB with 6% of pine leaf ensured its semi-incombustible performance. A combustible flexible binder or pine leaf powder over 6% failed the fire-resistant performance of SICIB. In addition, SICIBs with incombustible/semi-incombustible finishing and a 200 mm insulating layer (glass wool and sprayed poly urethane foam) met the U-factor of an external wall for buildings described in the Korean building code.

Evaluation of Convective Heat Transfer Performance of Twist-Vane Spacer Grid in Rod Bundle Flow (봉다발 유동 내 비틀림 혼합날개 지지격자의 대류열전달 성능 평가)

  • Lee, Chi Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.157-164
    • /
    • 2016
  • The performance of convective heat transfer in rod bundle flow was experimentally evaluated using a twist-vane spacer grid. A $4{\times}4$ square-arrayed rod bundle was prepared as the test section, with a pitch-to-diameter ratio(P/D) of ~1.35. To check the convective heat transfer performance, the circumferential and longitudinal variations in rod-wall temperatures were measured downstream of the twist-vane spacer grid. In the circumferential measurements, the rod-wall temperature toward the twist-vane tip showed the lowest value, which might be due to the deflected water flow caused by the twist-vane. On the other hand, the wall temperature of the longitudinal measurements near the twist-vane spacer grid decreased dramatically, which implies that the convective heat transfer performance was enhanced. A heat transfer enhancement of ~35 % was achieved near downstream of the twist-vane spacer grid, as compared with the upstream value. Based on the present experimental data, a correlation for predicting the heat transfer performance of a twist-vane spacer grid was proposed.

Hazard Assessment of Combustion Gases from Interior Materials (주요 건축 내장재의 연소가스 유해성 평가)

  • Seo, Hyun Jeong;Son, Dong Won
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.49-56
    • /
    • 2015
  • Toxic gases from five types of interior building materials were investigated according to Naval Engineering Standard (NES) 713. The materials were plywood, indoor wall coverings (wood wall plate members and pine wood), reinforced Styrofoam insulation, laminate flooring, and PVC. Specimens were measured using an NES 713 toxicity test apparatus to analyze the hazardous substances in combustion gas from the materials. We used the US Department of Defense standard (MIL-DTL, Military Standard) to calculate the toxicity index of the combustion gas. Emissions of $CO_2$ from all specimens did not exceed the NES 713 limit of 100,000 ppm. The amount of CO gas emissions from reinforced Styrofoam insulation was 6,098 ppm. 25 ppm and 49 ppm of formaldehyde were released from the reinforced Styrofoam insulation and PVC flooring, respectively. These values were less than the limit of 400 ppm. The highest emissions were from $NO_X$ emitted by plywood and were above the limit of 250 ppm. The toxicity index of the specimens were calculated as 5.19 for plywood, 4.13 for PVC flooring, 2.35 for reinforced Styrofoam insulation, 2.34 for laminate flooring, and 1.22 for indoor wall coverings (pine wood). Our research helps us to understand the properties of these five interior materials by analyzing the combustion gas and explaining the toxicity of constituents and the toxicity index. Also, it would be useful for giving fundamentals to guide the safe use of interior materials for applications.