• Title/Summary/Keyword: Fire retardants

Search Result 55, Processing Time 0.023 seconds

Fire Resistance Study of PP Thermoplastic Composites with Particulate Reinforcements and Br Flame Retardants (무기 입자 강화제와 브롬(Br) 난연제에 따른 폴리프로필렌 복합재료의 난연성 향상에 관한 연구)

  • 곽성복;황성덕;남재도;고재송;최형기
    • Polymer(Korea)
    • /
    • v.26 no.2
    • /
    • pp.260-269
    • /
    • 2002
  • The fire resistance of particulate polypropylene composite systems were investigated by using various reinforced particles such as zeolite, talc, $CaCO_3$ particles. In this study, The effect of particle size on the thermal properties of composite and the effect of reinforced particles on the fire resistance were studied. The inorganic reinforced particles used in this study were recycled zeolite(average particle diameter=85.34 $mu extrm{m}$), $CaCO_3$ (33.93 $mu extrm{m}$), and talc (18.51 $mu extrm{m}$). The fire resistance of composite systems was thoroughly examined by measuring limited oxygen index (LOI, ASTM D2863) and cone calorimetry (ASTM E1354, ISO 5660). Thermal stability of composite systems was thoroughly examined by measuring TGA. The flame retardants (DBDPO) and reinforced particles reduce the maximum heat release rate (M-HRR) in the order of Talc > $CaCO_3$ > recycled Zeolite. Comparing the cone calorimetry experimental results of the particle reinforced polymer composite system exhibited twice higher efficiency than DBDPO in polypropylene systems, and the LOI also showed similar trends to the cone calorimetry experiments. The optical and scanning electron microscopy techniques were used to investigate the composites ash layer and the core fracture surfaces in the burning process. The reinforcing inorganic particles seemed to accumulate at the surface of ash layer, and subsequently intercept the oxygen transport and heat transfer into the core area.

A Study on the Mechanical, Thermal, Morphological, and Water Absorption Properties of Wood Plastic Composites (WPCs) Filled with Talc and Environmentally-Friendly Flame Retardants (친환경 난연제와 탈크를 첨가한 목재·플라스틱 복합재의 기계적, 열적, 형태학적 및 수분흡수 특성에 관한 연구)

  • Lee, Danbee;Kim, Birm-June
    • Journal of the Korea Furniture Society
    • /
    • v.27 no.2
    • /
    • pp.137-144
    • /
    • 2016
  • Wood plastic composite (WPC) is a green composite made of wood flour and thermoplastics to provide better performance by removing the defects of both wood and plastics. However, relatively low thermal stability and poor fire resistance of wood and plastics included in WPC have been still issues in using WPC as a building material for interior applications. This study investigated the effect of environmentally-friendly flame retardants (EFFRs) on the mechanical, thermal, morphological, and water absorption properties of wood flour (WF)/talc/polypropylene (PP) composites in comparison with neat PP. The whole EFFRs-filled WF/talc/PP composites showed higher values in flexural strength, flexural modulus, and impact strength compared to neat PP. In thermal properties, aluminum hydroxide (AH)-filled composite showed a $36^{\circ}C$ reduction in maximum thermal decomposition temperature ($T_{max}$) compared to neat PP, but magnesium hydroxide (MH) played an important role in improving thermal stability of filled composite by showing the highest $T_{max}$. From this research, it can be said that MH has potentials in reinforcing PP-based WPCs with improvement of thermal stability.

Flame Retardant Performance of Functional Oil Stains According to the Mixing Ratio of Inorganic Flame Retardants and Phosphorus Flame Retardants (무기계 방염제와 인계 방염제 혼합비율에 따른 기능성 오일스테인의 방염성능)

  • Lee, Ju-Won;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.29-30
    • /
    • 2023
  • Wood is a construction material that has the advantages of carbon dioxide storage ability, noise reflection, and eco-friendliness. In order to use wood for a long time, you must use wood-specific paint, which is called oil stain. Oil stain improves water resistance and moisture resistance, but has the disadvantage of being weak against fire. This is because the oil contained in the oil stain causes a chemical reaction, and this chemical reaction causes the oil stain to spontaneously ignite, igniting nearby combustible materials and causing frequent fires. To improve this, in this study, different flame retardants were mixed and added to oil stain to produce functional oil stain. In addition, we would like to apply it to wood to check glow time and carbonization area. As a result of the experiment, it shows the best performance when mixed at 30(15 + 15)(%) and added to oil stain. The remaining burn time is satisfied from 10% for all samples, and the carbonized area is satisfied when it is 30%.

  • PDF

The Study on Enhance Flame Resistance of PASCON Prepared by Used Plastics (재생플라스틱을 이용한 파스콘 제품의 난연성 향상에 관한 연구)

  • Lee Chang-Woo;Kim Ji-Hwan;Hahm Young-Min;Chang Yoon-Ho
    • Fire Science and Engineering
    • /
    • v.19 no.4 s.60
    • /
    • pp.87-92
    • /
    • 2005
  • The PASCON of the flame resistance and the economic feasibility was prepared by non-halogenate flame retardant system. Prepared PASCON samples contained various flame retardants were subjected to flame tests(KS M 3015). We have studied that the effect of various flame retardants on the inflammability of PASCON and the effect of synergist on the flame resistance. As results, PASCON contained red-phosphorus as flame retardant exhibited excel lent flame retardancy. Also, the improvement of flame resistance is achieved by addition of 2.5phr synergist in the red-phosphorus(RP)/magnesium hydroxide(MH) system.

A Study on Total Fire Risk Assessment of Wallpapers (벽지의 종합적 화재 위험성 평가에 관한 연구)

  • 박미라;김광일;김태구
    • Fire Science and Engineering
    • /
    • v.17 no.1
    • /
    • pp.33-39
    • /
    • 2003
  • The purpose of this study is to evaluate flame retardant performance, thermal stability and toxicity of combustion gases for some commercial wallpapers. ID evaluate flame retardant performance 45 degree combustion experiment method was used and thermal stability was evaluated using DSC and TGA apparatus (OSC-50/Shimadzu, TGA2050/TA Instruments Inc) . Concentrations of CO, $CO_2$, HCN and HCI were measured with (GASTEC/Japan, MSA400 Gas Monitor/Infitron Inc) and toxicity indices using NIST N-Gas Model were applied to evaluate the toxicity of combustion gases. The evaluation produced the following results : First, paper cork and PVC wallpaper treated with flame retardants were found to be suitable for flame retardant performance standards. Second, paper, cork and PVC wallpaper non-treated with flame retardants were shown to be relatively more hazardous because they had greater calorific values and a faster decomposition time than the flame retardant treated wallpapers. Third, the toxicity indices of non-treated wallpapers were found to be higher than those of treated wallpapers, and the toxicity index of PVC wallpapers was higher than those of paper and cork wallpapers.

A Study on the Improvement of Flame Retardancy of Polylactide for Construction Materials (건축자재용 폴리락타이드의 난연성 향상에 관한 연구)

  • Cha, Sang-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.2
    • /
    • pp.113-119
    • /
    • 2021
  • Polymers are widely applied to construction materials due to their lightweight and excellent mechanical properties. However, owing to the combustible properties, polymers are one of the biggest reason of spreading large fires in fire accidents that occur frequently in the construction industry. Therefore, as a solution to this problem, many research has been conducted to impart flame retardancy by incorporating flame retardants to polymer matrix. Among these flame retardants, organic phosphorus-containing flame retardants have been attracting much attention because they have excellent compatibility with polymer matrix and low toxicity compared with halogen or inorganic-containing flame retardants. Accordingly, this study aims to design and synthesize an alkoxyamine-based organic phosphorus flame retardant to improve flame retardancy of polylactide which is an eco-friendly polymer used for construction materials.

Studies on the Fire Retardant Treatment of Wet Forming Mat for Hardboard (경질섬유판(硬質纖維板)의 습식(濕式)매트 내화처리(耐火處理)에 관(關)한 연구(硏究))

  • Shin, Dong-So;Lee, Hwa-Hyoung;Shim, Chong-Supp
    • Journal of the Korean Wood Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.180-188
    • /
    • 1982
  • This study was carried out to make hardboard fire retardants and to examine the properties of the hard-board treated with them. The fire retardant treatment was achieved by surface impregnation of water soluble retardant chemicals into the forming mat with 55 percent of moisture content. followed by the hot pressing process. Ammonium monophosphate, ammonium diphosphate, sodium borate, and boric acid were used as the fire retardants. Fire retardant test was carried out by using the differential thermal analysis thermogram. The results are summarized as follows: 1. Fire retardant-treated hardboard showed higher values of the specific gravity. water absoption, and flexural strength than those of untreated hardboard. Especially, the treatment of ammonium monophosphate gave the best results in the flexural strength, and a 10 gr/$ft^2$ loading of the fire retardant compound of ammonium monophoshate, ammonium diphosphate, and sodium borate drew the best flexural strength value among the three different experimental loadings of 10, 20 and 30 gr/$ft^2$. 2. There were no definite differences in moisture content between the fire retardant-treated hardboard and the untreated hardboard. 3. The fire retardant compound of ammonium monophosphate, ammonium diphosphate, and sodium borate resulted in the best fire retardancy, and its fire retardancy was increased in proportion to the increase of loading.

  • PDF

Fire Performance of the Wood Treated with Inorganic Fire Retardants

  • Son, Dong-Won;Kang, Mee-Ran;Kim, Jong-In;Park, Sang-Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.335-342
    • /
    • 2012
  • To prepare the eco-friendly fire retardant wood, Japanese red pine (Pinus densiflora), Hemlock (Tsuga heterophylla), and Radiata pine (Pinus radiata) were treated with inorganic chemicals, such as sodium silicate, boric acid, ammonium phosphate, and ammonium borate. Different combination and concentration of those chemicals were impregnated by vacuum/pressure treatment methods. The electron-beam treatment was used to increase the chemical penetration into the wood. The fire performance of the fire retardant treated wood was investigated. The penetration of chemicals into the wood was enhanced after electron beam treatment. Ignition time of the treated wood was the most effectively retarded by sodium silicate, ammonium phosphate, and ammonium borate. The most effective chemical combination was found at 50% sodium silicate and 3% ammonium borate, which satisfied flammability criteria for a fire retardant material in the KS F ISO 5660-1 standards.

Comparative Analysis of Flame Retardant Performance of Japanese Cypress Plywood Based on the Main Ingredients of Fire Retardant Paint (도료의 주성분에 따른 편백 합판의 방염성능 비교 분석)

  • Soo-Hee Lim;Ha-Sung Kong
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.1
    • /
    • pp.61-66
    • /
    • 2023
  • The purpose of this study is to compare and analyze the flame retardant performance of Japanese cypress(Chamaecyparis obtusa) plywood, commonly used in indoor decoration, furniture, and tableware, by treating it with three different fire retardants with different primary ingredients. The experiment was conducted in compliance with Article 31, Paragraph 2 of the Enforcement Decree of the Fire Facilities Installation and Management Act and Articles 4 and 7-2 of the Flame Retardant Performance Standards. After flame time, after glow time, char length, and char area were measured. As a result, first, after flame time was measured at 0 seconds regardless of whether the flame retardant treatment was applied. Second, after glow time was relatively long, measuring 22.7 seconds without treatment, which is likely due to the weak fire resistance and high concentration of carbon monoxide generated by the chemical characteristics of the Japanese cypress itself. Third, it was confirmed that the effects of the primary ingredient, phosphorus, in the flame retardant treatment varied depending on the technological development of the manufacturers of the same species of Japanese cypress plywood. In the future, it is expected that the results of this study will provide fundamental data to select flame retardant treatments that show high flame retardant performance according to the botanical characteristics of the wood.

Ignition and Heat Release Rate of Wood-based Materials in Cone Calorimeter Tests

  • Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.1-8
    • /
    • 2008
  • This study was performed to evaluate the burning characteristics of wood-based materials and the effect of surface treatment of fire retardant using cone calorimeter. Four types of wood-based materials, such as Plywood, Oriented Strand Board (OSB), Particle Board (PB) and Medium Density Fiberboard (MDF), were tested at a constant heat flux of $50kW/m^2$ to investigate the time to ignition, mass loss rate, heat release rate, effective heat of combustion, etc. In addition, each type of wood-based material was tested at the same heat flux after fire retardant treatment on the surface to evaluate the effect of this treatment on the burning characteristics. The surface treatment of fire retardant, by the amount of $110g/m^2$, delayed the time to ignition almost twice. However, it was indicated that heat release rate, mass loss rate, and effective heat of combustion were not significantly affected by fire retardants treatment for all types of wood-based materials.