• Title/Summary/Keyword: Fire gas

Search Result 1,030, Processing Time 0.038 seconds

A Study on Remote Analysis of Fire Gas Using Open Path FT-IR (개방형 적외선분석기를 사용한 원거리 화재발생가스 측정에 관한 연구)

  • Cho, Nam-Wook;Lee, In-Gu;Lee, Jong-Cheon
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.39-45
    • /
    • 2013
  • The gas generated from the fire which is continuous until material is completely burned. We can analyze usual gas using chromatography analysis but it can not be applicated to analyze for the gas from the fire because which gas is enormously generated. Besides, chromatography analysis has the disadvantage that it can not continuously analyze the sample's representativness, gas from the fire, Fourier transform infrared spectroscopy, FT-IR, has been utilized for effective combustion gas analysis method in small-scale combustion and on-line analysis has been attempted continuously. However, continuous sampling of 3.5l/min can not be representativness of sample if the gas caused by a massive fire and space. And the gas sampling is practically impossible in such a case. In this study, we attempted remote analysis while overcoming the disadvantages of the current gas analysis by using an Open-Path Infrared Analyzer without pre-treatment of the sampling. For the remote analysis, quantitative analysis method was established regarding each combustion toxic gases. And we measured the gases from the fire that occurs in the real case.

Development of an Inert Gas Water Mist System -A Numerical Study on Ventilation of the Fire Test Room- (불활성가스 미분무소화설비의 개발 -화재시험실의 급기에 관한 수치연구-)

  • Park, Woe-Chul;Jeong, Lee-Gyu
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.25-30
    • /
    • 2008
  • A Numerical study was carried out for a propane gas pool fire in the fire test room of $2.5m{\times}2.0m{\times}2.5m$ for testing a inert gas water mist system, to investigate a possible under-ventilation in the fire test room. For the fire sizes of 60 kW and 120 kW, changes in the temperature and CO concentration with and without a window were investigated. It was confirmed that the influence of the window on the distributions of temperature and CO concentration was small in the two fire sizes, and hence the under-ventilation was not occurred in the room.

  • PDF

A Study on Clean Agent Fire Extinguishing Ability Using Nitrogen and Novec Mixtures Gas (질소와 노벡 혼합가스를 이용한 청정소화약제의 소화성능에 관한 연구)

  • Lim, Woo-Sub;Jung, Jong-Jin;Nam, Dong-gun;SaKong, Seong-Ho;Kim, Jong-Won;Choi, Kenu-Joo
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.76-83
    • /
    • 2008
  • In the course of increasing in human and material damage caused by fire, it is an important research field to develop clean extinguishing agent which does no harm to global environment as well as has a good extinguishing efficiency. This research is a basic step to develop a new clean extinguishing agent. In order to get a satisfactory result, we tested fire extinguishing ability using nitrogen and Novec mixtures gas which are inert gas and new clean extinguishing agent. We used Cup Burner Test made by international standard ISO-14520 regulations of gaseous extinguishing agent ability test, and the fuels used in the test are n-heptane, methanol, ethanol, iso-propanol and 1-butanol. The experimental results of flame extinguishing concentration are n-heptane 6.54%, methanol 8.47%, ethanol 6.98%, isopropanol 6.10% and butanol 6.54% by pure Novec agent. So the finding is that a new clean agent, Novec has an efficient extinguishing ability in a state of gas. Also, in a test as to mixtures gas of nitrogen and Novec, it has a good result for minimum oxygen concentration is under 16%.

Inert and Halogenated compounds Fire Fighting Agent And Fire Fighting System Research (불활성계와 할로카본계 복합 소화약제 및 소화시스템 개발)

  • Choi, Keun-Joo;Ahn, Sang-Soo;Kim, Jong-Won;Jung, Jong-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.165-171
    • /
    • 2009
  • A compound agent that mixes inert gas agents and halocarbon agents and a complex fire suppression system using the compound agent have been developed. The ultimate goal of this study is to develop the extinguishing agent which doesn't destroy the ozone layer and has low GWP and to develop the fire suppression system. As a result of the test and research for inert gas agents and halocarbon agents, nitrogen and FK-5-1-12 were selected finally and have been tested and studies for three years. Thus, the optimal extinguishing agent and fire suppression system have been accomplished. The performance of the agent and system was tested according to KFI performance test technical standards for gas fire extinguishing system and the fitness of the agent and system for a fire was certified by Korea Fire Industry Technology Institute (KFI).

  • PDF

An Experimental Study on Temperature Measurement Bias using Thermocouple in Simulated Thermal Environments of Fire (모사된 화재의 열적환경에서 열전대를 이용한 온도 측정오차에 관한 실험적 연구)

  • Han, Ho-Sik;Yun, Hong-Seok;Hwang, Cheol-Hong;Kim, Sung-Chan
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.7-13
    • /
    • 2017
  • An experimental study was conducted to identify the quantitative measurement bias for the bare-bead thermocouple (TC), which was widely used for measuring temperature in fire experiments. To this end, an apparatus could be controlled individually gas flow rate, preheating temperature and incident radiative heat flux was developed to simulate the thermal environments of fire. A relative measurement bias of bare-bead TC was evaluated with the comparison of double-shield aspirated TC. As a result, the relative measurement bias of bare-bead TC was gradually increased with the increase in radiative heat flux with constant gas temperature. The relative bias was also significantly increased with the decrease in gas temperature. Quantitatively, at the gas temperature of $20^{\circ}C$, the bare-bead TC had the relative bias of approximately 400% with the radiative heat flux of $20kW/m^2$ corresponding to thermal radiation level of the flashover. The present study was intend to provide fire researchers with methodologies for the reanalyses of temperature measured using bare-bead TC, radiation corrections, and validation of fire modeling.

LSTM-based Early Fire Detection System using Small Amount Data

  • Seonhwa Kim;Kwangjae Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.110-116
    • /
    • 2024
  • Despite the continuous advancement of science and technology, fire accidents continue to occur without decreasing over time, so there is a constant need for a system that can accurately detect fires at an early stage. However, because most existing fire detection systems detect fire in the early stage of combustion when smoke is generated, rapid fire prevention actions may be delayed. Therefore we propose an early fire detection system that can perform early fire detection at a reasonable cost using LSTM, a deep learning model based on multi-gas sensors with high selectivity in the early stage of decomposition rather than the smoke generation stage. This system combines multiple gas sensors to achieve faster detection speeds than traditional sensors. In addition, through window sliding techniques and model light-weighting, the false alarm rate is low while maintaining the same high accuracy as existing deep learning. This shows that the proposed fire early detection system is a meaningful research in the disaster and engineering fields.

  • PDF

Examination on Fire Extinguishing Performance of Full Cone and Hollow Cone Twin-fluid Atomizers: Effects of Supply Gas and Water Mist (중실원추형 및 중공원추형 2유체 미립화기의 화재 소화 성능 검토: 공급 기체와 미분무 영향)

  • Kim, Dong Hwan;Lee, Chi Young
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.28-36
    • /
    • 2019
  • In the present study, the effects of supply gas and water mist on the heptane pool fire extinguishing performance were investigated using the full cone and hollow cone twin-fluid atomizers. Air or nitrogen of 30 lpm (Liter per minute; L/min) was used as the supply gas, and the experiments were conducted under the water flow rate conditions of 0 lpm (i.e., discharge of air or nitrogen only) and 0.085 lpm (i.e., discharge of water mist with supply gas). Experimental results confirmed that the use of water mist discharge with the supply gas and full cone spray pattern reduced the fire extinguishing time as compared to that of only supply gas discharge and hollow cone spray pattern. In addition, for the discharge of water mist using the full cone twin-fluid atomizer, water mist significantly affected fire extinguishing performance, whereas the effect of the supply gas was less pronounced. On the other hand, for the discharge of water mist using the hollow cone twin-fluid atomizer, the fire extinguishing time was remarkably reduced by the supply of nitrogen, as compared with that of air, indicating that the supply gas as well as water mist can significantly affect fire extinguishing performance.

A Research for Assessment Fire Toxic Gas of Construction Material Using FT-IR and FED (FT-IR과 FED를 이용한 건축 재료의 연소독성평가에 관한 연구)

  • Kim, Sung-Soo;Cho, Nam-Wook;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.27-31
    • /
    • 2011
  • In this study, combustion toxicity evaluation for building interior materials and study for toxicity as using FT-IR analysis. this experiment for the calculation of toxicity index, it using a cone calorimeter model in KS F ISO/TR 9122-4 as a fire model. It is following ISO 19702 procedure for assessing fire toxic gas using FT-IR. This experiment used calculation method for toxicity index (FED) among the international standards. $LC_{50}$ is a concentration that it can cause death to 50 % of experimental animal in 30 minutes - exposure gas test. comparison with the three kinds of toxicity fire gas of construction materials using toxicity index.

Review of Hazard Test of Combustion Gas and Exhaust Temperature of Acrylic Fire Protection Paint (아크릴계 내화도료 연소가스의 유해성 평가와 배기온도에 대한 고찰)

  • Jeon, Soo-Min;Kim, Jae-Jun
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.1-6
    • /
    • 2017
  • A fire resistance certification needs to be obtained before fire protection paint can be used in Korea. In the case of paint, the tests for certification are fire, gas hazard and bond strength. According to the hazard test standard of combustion gas, 16 mice are sacrificed every test. Therefore, there are ethical problems for the experimenter and legal problems for the laboratory. Accordingly, many alternatives are being assessed, such as combustion gas analysis, but they have not replaced animal testing yet. With gas hazard testing, the exhaust gas temperature can be measured. The property of the initial reaction of a specific fire paint can be characterized by this temperature. The purpose of this study was to consider the improvement point for a gas hazard test through comparative analysis of the exhaust temperature and the time of death of the mice.