• Title/Summary/Keyword: Fire extinguishing agent

Search Result 100, Processing Time 0.024 seconds

A Study on Extinguishing Concentration of K2CO3-Zeolite Composites (K2CO3가 흡착된 합성제올라이트 구조체의 소화농도에 관한 연구)

  • Kim, Seung-Il;Shin, Chang-Sub
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.42-47
    • /
    • 2012
  • In the study, fire extinguishing concentration of $K_2CO_3$-Zeolite composite was measured. Zeolite composite is a porous adsorbent which has small particle size, low density and anti-catalytic effect. Scanning Electron Microscopy, X-Ray diffraction and thermal analysis were also conducted to investigate the structural properties of composite. The result showed that despite of weight ratio, the extinguishing concentration of the composite was lower than pure $K_2CO_3$. The extinguishing concentration of $K_2CO_3$-Zeolite composite which has weight ratio of 7 : 3 was 5.72 times lower than that of pure $K_2CO_3$ and 1.1 times lower than that of ABC powder. The SEM and XRD patterns showed that $K_2CO_3$ was adsorbed on the Zeolite properly, and through the thermal analysis, it was founded that the composite is more effective extinguishing agent than pure $K_2CO_3$.

A Study On The Application Of Foam Extinfuishing Agent By Using Halon 1301 And Halon Alternatives (Halon 1301과 Halon 대체 소화약제를 기포제로 이용한 포 소화약제에 대한 연구)

  • Jung, Ki-Chnag;Lim, Sung-Muk;Lee, Chang-Sub;Kang, Young-Goo;Kim, Hong
    • Fire Science and Engineering
    • /
    • v.10 no.3
    • /
    • pp.29-40
    • /
    • 1996
  • The AFFF(Aqueous Film Forming Foam : 3M Company's Light Water) agent are synthetic compounds that foams which are similar to those produced by protein based materials. The foam extinguishing agent was used In the extinguisher was the AFFF agent. We sought, however, to make other foams by using halon 1301 (CF$_3$Br) and halon alternatives, such as HCFC Blend A($CHCIF_2$ 82%, $CF_3$CHCIF 9.5%m $C_{10}$$H_{16}$ 3.75%), HFC-227ea ($CF_3$ $CHFCF_3$) We selected these alternatives instead of air in order to raise the expansion ratio of the AFFF agent. By these means we discovered that it is possible to increase the expansion ratio of the AFFF agent up to 44:1 and up to 24:1 when HFC-227ea was used as a halon alternatives. Therefore our new foam extinguishing agents can be used in a portable extinguish agents can be used in a portable extinguishers.

  • PDF

A Measure on the Use of Metal Fire Extinguisher for Effective Early Extinguishment of Magnesium Fire (마그네슘 화재의 효과적인 초기소화를 위한 금속화재용 소화기 활용방안에 관한 연구)

  • Nam, Ki-Hun;Lee, Jun-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.795-800
    • /
    • 2021
  • Magnesium fires require early fire extinguishment due to impulsive and rapid-fire expansion that makes difficult fire fighting. For this reason, efficient early fire fighting and appropriate prevention of fire spread are considered mainly as significant fire extinction measures. However, there is a limit to developing tools for metal fire fighting, such as devices, facilities, and fire extinguishing agents, due to a lack of regulatory instruments in South Korea. It often generates challenges to early fire fighting implementation by fire responders. Thus, the aim of this study is to investigate a measure for securing the efficiency of early fire fighting in magnesium. This study identified the applicability of the metal fire extinguisher used in the United States for magnesium fire through a performance test of a fire extinguishing agent for metal fire. Moreover, we implemented a free burning experiment using magnesium powder to compare varying combustion and extinction process that could occur during applying metal fire extinguishers. Finally, this study suggests measures of the use and application of metal fire extinguishers for magnesium.

Adsorption Characteristics of Al (III), Ni (II), Sm (III) Ions on Resin with Styrene Hazardous Material in Reinforcement Water Fire Extinguishing Agent

  • Kim, Joon-Tae
    • Journal of Integrative Natural Science
    • /
    • v.6 no.3
    • /
    • pp.151-157
    • /
    • 2013
  • The ion exchange resins were synthesized from 1-aza-18-crown-6 macrocyclic ligand attached to styrene (2th petroleum in 4th class hazardous material) divinylbenzene (DVB) copolymer with crosslinks of 1%, 6%, and 15% by substitution reaction. These synthetic resins were confirmed by chlorine content, elementary analysis, surface area, and IR-spectrum. The object of this study was to seperate the metal ion absorbed in reinforcement water fire extinguishing agent. As the results of the effects of pH, equilibrium arrival time, and crosslink of synthetic resin on metal ion adsorption for resin adsorbent, the metal ions were showed high adsorption at pH 3 or over and adsorption equilibrium of metal ions was about 2 hours. In addition, adsorption selectivity for the resin in water was the order of Al (III) > Ni (II) > Sm (III) ions, adsorbability of the metal ions was in the crosslinks order of 1%, 6%, and 15%.

Adsorption Characteristic of Mg(II), Al(III), Pb(II) Metal Ions on Cryptand Ion Exchange Resin from Water Fire Extinguishing Agent (물 소화약제로부터 Cryptand 이온교환수지의 Mg(II), Al(III) 및 Pb(II) 흡착특성)

  • Kim, Joon-Tae;Kim, Kwan-Chun
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • Resins were synthesized with 1-aza-15-crown-5 macrocyclic ligand attached to styrene(dangerous matter) divinylbenzene(DVB) copolymer with crosslink of 1, 2, 6 and 15% by substitution reaction. The synthesis of these resins was confirmed by content of chlorine, element analysis, and IR-spectrum. The effects of pH, time and crosslink on adsorption of metal ion from water fire extinguishing agent by the synthetic resin adsorbent were investigated. The metal ion was showed fast adsorption on the resins above pH 3. The optimum equilibrium time for adsorption of metallic ions was about two hours. The adsorption selectivity determined in water was in increasing order of $Mg^{2+}>Al^{3+}>Pb^{2+}$. The adsorption was in the order of 1, 2, 6, and 15% crosslink resin.

STEPS TOWARD HALON PHASE-OUT, PROPOSED SUBSTITUTES AND ALTERNATIVE FOR FIXED FIRE SUPPRESSION SYSTEMS

  • Msc.Fpe, Suprapto;Rahardja, Nugraha-B
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.564-572
    • /
    • 1997
  • Following the ratification of Vienna Convention for Ozone Layer Protection and Montreal Protocol, Indonesia will implement the phasing-out of to halon at end 1996. Questions are increasing especially from the users where halon has used for many years as the most effective fire extinguishing agent, concerning halon substitutes, alternative systems as well as the handling and utilization of the existing halon. Halon can still be used for critical and essential uses, however, such usage has been gradually eliminated, due to the emergence of halon-like replacement. A concept of halon banking system is proposed to considered, taking into account several aspects such as enforced regulation, institutional involvement technology as well as financing. This paper gives a general overview regarding phase-out implementation, alternative extinguishing systems and concept on halon banking system with special reference to Indonesian case.

  • PDF

A Study on Fire Extinguishing Performance Evaluation of Compressed Air Foam System (압축공기포 소화설비의 소화성능 평가에 관한 연구)

  • Lee, Jang-Won;Lim, Woo-Sub;Kim, Sung-Soo;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.73-78
    • /
    • 2012
  • This research is to evaluate the fire extinguishing performance of Compressed Air Foam System and this test was conducted using Foam Head System. Compressed Air Foam System adopt the methods of causing the foam by mixing compressed air in foam-aqueous solution, In Overseas, CAFS (Compressed Air Foam System) is generally used because long distance discharge is possible and the water damage can be minimized by reducing the water usage. In this study, Comparative analysis on fire extinguishing effect is done through test to compare the performance between Foam System applied existing air mixture method and Compressed Air Foam System applied AFFF 3 %, foam-extinguishing-agent based on UL162 standard. In Compressed Air Foam System, the volume proportion of air mixture to foam-aqueous solution is 1 to 1 and discharging flow rate is 140 L/min, 160 L/min, 180 L/min, 200 L/min each. As a result of the test, in terms of fire extinguishing performance, fire suppression time for Compressed Air Foam Systems is shorter than for General Air Mixture System in all flow conditions.

Characteristics of Water Solutions Containing Nonionic Surfactants and Their Fire Fighting Performance (비이온성 계면활성제가 함유된 수용액의 특성과 소화성능)

  • 이윤우;이윤용;박양원
    • Fire Science and Engineering
    • /
    • v.16 no.3
    • /
    • pp.61-70
    • /
    • 2002
  • A fire extinguishing agent containing non-ionic surfactant which is environmentally friendly and low cost was prepared and tested its characteristics and fire fighting performance. Ethoxylated sorbitol septaoleate, containing 40 moles of ethylene oxide as the primary surfactant, linear ethoxylated secondary alcohol, containing 7-11 moles ethylene oxide as the secondary surfactant, and ethoxylated sorbitol trioleate, containing 40-50 moles of ethylene oxide were used in the agent. It is demonstrated that the water solution containing 6 wt% agent is capable to extinguish gasoline fire when it is put into the fire four times as much as gasoline. According to the field test of class B fire with a unit 1, it is found that the fire fighting performance is directly proportional to the concentration of surfactant in the agent.

Fire Extinguishing Ability of Binary Gaseous Extinguishing Agents Evaluated by Cup Burner and Numerical Studies (이성분계 가스계소화약제 소화성능의 컵버너실험 및 이론적 고찰)

  • Kwon, Kyung-Ok;Won, Dong-Bin;Choi, Keun-Joo;Kim, Jong-Won;Shin, Dong-Il
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.3
    • /
    • pp.7-12
    • /
    • 2007
  • The search for a new fire-extinguishing agent with all the desirable properties of halon 1301 has not been successful. To study binary gaseous extinguishing agents instead, one has to determine the extinguishing concentrations for several compositions of a given chemical in an inert gas. This process is expensive and time consuming. The fire suppression efficiencies of gas mixtures of HFC 125 and HFC 227ea with nitrogen as total flooding agents were studied by cup burner method. It was shown that addition of small amounts of those extinguishants to nitrogen can enhance the suppression effectiveness of the inert gas. As expected, the degree of synergism was highest at low concentrations of the chemical. For each binary system, extinguishing concentrations of the pure compounds and one binary data were used to predict the extinguishing concentrations for the entire range of binary composition. The predicted values were very close to experimental data.

  • PDF

An Experimental Study on Droplet Size according to Discharge Coefficient of Sprinkler Head (스프링클러 헤드의 방수상수에 따른 물방울 크기에 관한 실험적 연구)

  • Hur, Min Noung;Shin, Changsub
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.4
    • /
    • pp.16-21
    • /
    • 2017
  • The sprinkler system is a basic fire extinguishing system that uses water as an extinguishing agent. In order to evaluate the fire extinguishing performance of the sprinkler system, information such as the discharge angle, discharge speed, discharge pressure, flow rate, and water droplet size of the installed head are required. However, there is a lack of research on droplets size compared to other requirements. In this study, to evaluate the extinguishing characteristics of sprinkler system, the droplet size distribution was measured for various types of sprinkler heads actually used. The size of the droplet was measured using laser diffraction method. The 50% cumulative volume distribution ($D_{v50}$) according to discharge coefficient(K factor) was $540{\mu}m{\sim}695{\mu}m$ for K50, $542{\mu}m{\sim}1,192{\mu}m$ for K80, $980{\mu}m{\sim}1,223{\mu}m$ for K115 and $1,188{\mu}m{\sim}1,234{\mu}m$ for K202. Based on the measured results, the vaeiance of the droplet particle distribution and the distribution ($D_{v50}$) according to discharge coefficient(K factor) was $540{\mu}m{\sim}695{\mu}m$ for K50, $542{\mu}m{\sim}1,192{\mu}m$ for K80, $980{\mu}m{\sim}1,223{\mu}m$ for K115 and $1,188{\mu}m{\sim}1,234{\mu}m$ for K202. Based on the measured results, the vaeiance of the droplet particle distribution and the Rosin-Rammler index value are presented. As a result of the fire simulation with FDS, it was confirmed that the performance difference occurs according to the water droplet size distribution even when the same amount of water is used. Therefore, the extinguishing performance of the sprinkler system should be evaluated considering the droplet size distribution according to the sprinkler head type.