• Title/Summary/Keyword: Fire engine

Search Result 216, Processing Time 0.032 seconds

An Experimental Study on Performance and the Exhaust Emissions in a Small High Speed Gas Engine by Using Natural Gas and Hydrogen Fuel (천연가스 및 수소연료를 사용하는 소형 고속 가스엔진에 있어서 성능 및 배기 특성)

  • Kim B.S.;Shioji M.;Chu B. G.
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.2 s.10
    • /
    • pp.20-26
    • /
    • 2000
  • In this experimental study, we examined gas engine characteristics of a small high-speed engine in various ways. And we studied performance of natural gas, hydrogen gas and gasoline fuel engines, as emission characteristics and process of combustion. For the purpose of preventing back-fire occurred in case of high-speed and high load in hydrogen engine, we controlled air quantity by installing throttle valve in gas fuel engine. We performed experiment by mixing nitrogen to hydrogen fuel. As a result, we could find out characteristics which of a high speed small engine by applying gas fuels.

  • PDF

A Study on Fire Detection in Ship Engine Rooms Using Convolutional Neural Network (합성곱 신경망을 이용한 선박 기관실에서의 화재 검출에 관한 연구)

  • Park, Kyung-Min;Bae, Cherl-O
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.476-481
    • /
    • 2019
  • Early detection of fire is an important measure for minimizing the loss of life and property damage. However, fire and smoke need to be simultaneously detected. In this context, numerous studies have been conducted on image-based fire detection. Conventional fire detection methods are compute-intensive and comprise several algorithms for extracting the flame and smoke characteristics. Hence, deep learning algorithms and convolution neural networks can be alternatively employed for fire detection. In this study, recorded image data of fire in a ship engine room were analyzed. The flame and smoke characteristics were extracted from the outer box, and the YOLO (You Only Look Once) convolutional neural network algorithm was subsequently employed for learning and testing. Experimental results were evaluated with respect to three attributes, namely detection rate, error rate, and accuracy. The respective values of detection rate, error rate, and accuracy are found to be 0.994, 0.011, and 0.998 for the flame, 0.978, 0.021, and 0.978 for the smoke, and the calculation time is found to be 0.009 s.

A Numerical Study on Smoke Behavior of Fishing Vessel Engine Room (어선 기관실의 연기 거동에 관한 수치해석 연구)

  • JANG, Ho-Sung;JI, Sang-Won
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.683-690
    • /
    • 2021
  • The ventilation system of the engine room of a ship is generally installed to supply the combustion air necessary for the internal combustion engine and to remove the heat source generated in the engine room, and it must satisfy the international standard (ISO 8861) for the design conditions and calculation standards for the ventilation of the ship engine room. The response delay of the ventilation system including the fire detector is affected by the airflow formed inside the area and the location of the fire detector. In this study, to improve the initial fire detection response speed of a fire detector installed on a fishing vessel and to maintain the sensitivity of the installed detector, the smoke behavior was simulated using the air flow field inside the engine room, the amount of combustion air in the internal combustion engine, and the internal pressure of the engine room as variables. Analysis of the simulation results showed that reducing the flow rate in the air flow field and increasing the vortex by reducing the internal pressure of the engine room and installing a smoke curtain would accelerate the rise of the ceiling of the smoke component and improve the smoke detector response speed and ventilation system.

A Study on Smoke Detection using LBP and GLCM in Engine Room (선박의 기관실에서의 연기 검출을 위한 LBP-GLCM 알고리즘에 관한 연구)

  • Park, Kyung-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.111-116
    • /
    • 2019
  • The fire detectors used in the engine rooms of ships offer only a slow response to emergencies because smoke or heat must reach detectors installed on ceilings, but the air flow in engine rooms can be very fluid depending on the use of equipment. In order to overcome these disadvantages, much research on video-based fire detection has been conducted in recent years. Video-based fire detection is effective for initial detection of fire because it is not affected by air flow and transmission speed is fast. In this paper, experiments were performed using images of smoke from a smoke generator in an engine room. Data generated using LBP and GLCM operators that extract the textural features of smoke was classified using SVM, which is a machine learning classifier. Even if smoke did not rise to the ceiling, where detectors were installed, smoke detection was confirmed using the image-based technique.

A Study on Fire Suppression Measures Used in Wooden Temples (목조 사찰화재의 유형별 진압대책에 관한 연구)

  • Ko, Gi-Bong;Lee, Si-Young;Chae, Jin
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.10-17
    • /
    • 2012
  • This study classifies the fire suppression measures implemented by wooden temples into four types according to availability of the pump trucks (water tanks) at the fire sites. And this study outlines the strategies and methods based on each type of fire suppression measure. The results show that the fire suppression strategy applied in general buildings is also employed in temples where pump trucks (water tanks) and fire-fighting water are available. For temples where trucks and water are not available, the helicopter, water bag, fire suppression strategy focused on water supply link, automatic transmission system of a fire engine's level by using radio communication network, and water bladder are used. In addition, general four-wheel-drive vehicles equipped with fire fighting tools such as motor pump, hose, nozzle, and water bladder should be deployed in fire stations around the temples. A fire suppression strategy using A-type ladders is also required.

A Study on the Ventilation Improvement of Diesel Locomotive Engine Load Test Building using Computational Fluid Dynamics (전산유체역학을 이용한 디젤엔진 부하시험장의 환기 개선에 관한 연구)

  • Park Duckshin;Jeong Byungcheol;Cho Youngmin;Park Byunghyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.2
    • /
    • pp.227-242
    • /
    • 2005
  • The aim of this study is to relieve the poor ventilation problem of the diesel locomotive engine load test building, located in an urban area. This paper evaluates the ventilation performances of the studied load test building based on the temperature measurement experiment and the computational fluid dynamics (CFD) during the engine load test. The temperature rise caused by the radiator blower of the building was turned out to be the main cause of disturbing the thermal conditions of the building. The indoor temperature distributions simulated by Fluent were validated with the temperature measurement results obtained from the studied building. The simulation results indicated that the comfort condition of this building was poor We suggested several remedial changes in the duct structure of this building for the improvement of the comfort conditions. In addition, a prototype drawing combining several improved design options was proposed. and then the simulation of the temperature distribution in the proposed prototype was performed. The result indicated that the indoor thermal condition of this proposed building was improved when compared with that of the current building.

A Study on Characteristics and the Back Fire Limit Equivalnce Ratio of Hydrogen Fueled Engine with External Mixture (흡기관분사식 수소기관의 특성 및 역화한계당량비의 해석)

  • Paik, Sung Ho;Lee, Jong Tai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.1
    • /
    • pp.55-62
    • /
    • 1996
  • As an essential step for development of a duel injection hydrogen fueled engine which can obtain high thermal efficiency and power in overall operating range, performance and BFL(back fire limit) equivalance ratio in hydrogen fueled engine with external mixture are investigated. As the results, BFL equivalence ratio in hydrogen fueled engine with external mixture is approximately 0.7. It is deduced that controls of driving conditions are required in transient stage from external mixture type to inner injection type. And in order to increase thermal efficiency, it is also found that BFL equivalence ratio should be expanded as much as possible.

  • PDF

A Development and Basic Characteristics of MCVVT Research Hydrogen Engine for Practical Use of External Mixture Hydrogen-Fueled Engine (흡기관 분사식 수소기관의 실용화를 위한 MCVVT 연구용 수소기관의 개발과 기본 특성)

  • Kang, J.K.;Cong, Huynh Thanh;Noh, K.C.;Lee, J.T.;Lee, J.H.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.3
    • /
    • pp.255-262
    • /
    • 2006
  • To develop a hydrogen fueled engine with external mixture which uses in high reliability, low cost and low pressure, the single cylinder research engine with MCVVT(Mechanical Continuous Variable Valve Timing) system is developed and its basic characteristics analyzed. The MCVVT developed has high reliability and the valve timing change is possible in wide range continuously. Though the mechanical loss due to MCVVT system is increased a little, back-fire suppression research for valve overlap period is no difficulty. It's also confirmed that the hydrogen-fueled engine has lower torque and is possible high lean burn. As fuel-air equivalence ratio is high, as thermal efficiency is remarkable increasing.

The Assessment of Fire Suppression Capability of Water-Mist System for Machinery Engine Room (선박기관구역 미분무수 소화설비 화재진압 성능 평가)

  • Choi, Byung-Il;Han, Yon-Shik;Oh, Chang-Bo;Kim, Myung-Bae;Kim, Chang
    • Fire Science and Engineering
    • /
    • v.21 no.2 s.66
    • /
    • pp.111-117
    • /
    • 2007
  • Full scale fire suppression test by water mist system were performed in machinery engine room ($20m{\times}15m{\times}10m$) according to IMO MSC/circ. 1165. The K-factor and operating pressure were 2.4 and 80 bar respectively. To assess the prediction capability of numerical simulation, FDS simulation was performed at the same operating condition with the full scale experiment. It was found that FDS simulation had the limitation for the fire extinguishing time prediction but was able to predict the spatial temperature distribution.