• Title/Summary/Keyword: Fire Resistance Performance

Search Result 477, Processing Time 0.023 seconds

The Research for the Establishment of Test Method of Durability on Intumescent Coating System (내화도료 내구성 평가 방법 설정에 관한 연구)

  • Choi, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.23 no.1
    • /
    • pp.40-47
    • /
    • 2009
  • Applying fire resistive coating to steel members is one of the general methods to secure fire resistance performance of steel members. And intumescent coating system is currently one of methods giving fire resistance to steel members. Intumescent coating system for fire resistance, however, has undesirable weaknesses that fire resistance performance of steel members is being deteriorated due to cracks and falling-offs of the coverings as time goes after completion of the coverings to the members. So it is necessary to understand changes of the durability and the fire resistance performance of intumescent coating system over a time elapse and to reflect such change properly into the building design and construction. This research is performed to present the test method of durability and the maintenance of intumescent coating system through theoretical investigation of the test method of durability and the guide of maintenance & management of intumescent coating system of several countries, including the Britain, United States, Japan.

Properties of Fire Endurance of High Performance RC Column with Laterral Confinement Method (횡구속 방법에 따른 고성능 RC 기둥 콘크리트의 내화특성)

  • Hwang Yin Seong;Kim Ki-Hoon;Bae Yeoun Ki;Lee Bo Hyeong;Lee Jae Sam;Han Cheon Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.553-556
    • /
    • 2004
  • This paper is to investigate the spalling and fire endurance of high performance RC column member with PP fiber and lateral confinement of metal lath and non fire resistance removal type form. According to test results, combination of PP fiber and metal lath as well as use fire resistance non removal type form had favorable fire resistance by discharging internal vapour pressure and lateral confining. After fire endurance test, compressive strength decreased markedly caused by internal expansion pressure and crack. Residual strength of plain concrete was decreased to $22\%$. The use of PP fiber and lateral confinement of metal lath and non removal type form enhanced the residual strength above $40\%$. Especially, the combination of $0.1\%$ of PP fiber and lateral confinement with the level of 2.3T exhibited more than $51\%$ of residual strength. Therefore, to improve fire endurance and spalling resistance, the combination of $0.1\%$ of PP fiber and metal lath with 2.3T can be the proper measure.

  • PDF

Fire Behavior of Reinforced Concrete Filled Square Steel Tube Columns Under Constant Axial Loads

  • Jeeyoung Lee;Seulgi Han;Jinwon Shin;Inrak Choi;Sungmo Choi
    • International Journal of High-Rise Buildings
    • /
    • v.13 no.1
    • /
    • pp.85-95
    • /
    • 2024
  • A composite member made of concrete-filled steel tubes (CFT columns) has been recognized for its fire resistance due to the thermal mass effect of concrete inside the steel tube, as shown in various studies. In this study, the fire resistance performance of reinforced CFT columns under constant axial load was evaluated using finite element analysis with ABAQUS. For this purpose, the variables including cross-section size, steel tube thickness, and concrete cover thickness were set, and the temperature distribution in the column cross-section exposed to a standard fire was investigated using heat transfer analysis. Ultimately, a P-M interaction curve was obtained by evaluating the overall residual strength of columns, and the fire resistance time was determined by evaluating axial displacement-time responses due to the reduction in load capacity during fire through stress analysis.

Experimental Study on Limiting Temperatures of Structural Beams made with Structural Steel According to Load Ratios (하중비에 따른 강재 보의 한계온도에 관한 실험적 연구)

  • Kwon, In-Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.581-588
    • /
    • 2010
  • Recently the requirements of the buildings built with structural steel were increased in terms of structural stabilities and fire resistance at severe fire conditions. To meet the building regulations of fire resistance, a fire design is needed. This is of a prescriptive method and a performance engineering based method. Recently a simple calculation method as one of performance based engineering method is very popular because of its ease for an application in building built with structural steel. But, in Korea the performance based engineering method is not allowed yet. Thus it is needed to make a guideline for the performance based engineering method. The purpose of this study is to establish the limit temperature derived from structural beams made with both a H-section and a H-section filled with concrete at the web and derived the limit temperatures from beams made with H-sections and found out that the limit temperatures from two kinds of specimens depended on the applied loads and the specimens filled with the concrete represented 3 hour fire resistance in the range of 80%, 60%, and 50% of the maximum load.

Fire Resistance Evaluation of SLIM AU Composite Beam (슬림 AU 합성보 내화성능 평가)

  • Oh, Myoung-Ho;Kim, Myeong-Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.53-58
    • /
    • 2016
  • SLIM AU(A plus U-shaped) composite beam was developed for reducing the story height in the residential buildings, and saving the cosrtuction cost of floor structures. Structural performance and economic feasibility of the composite beam have been sufficiently approved through the structural experiments and the analytical studies. However, the verification for fire safety is necessary for the practical application of the composite beam. The fire resistance tests with and without loading were performed for the fire safety verification, and the test results were summarized in this paper.

Comparative Study for Fire Protective Materials of Column According to Variance of Lengths (길이변화에 따른 기둥부재의 내화피복 비교연구)

  • Kwon, In-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.118-119
    • /
    • 2014
  • A fire in a steel framed building can decrease a structural stability and cause deformation. And the fire continues the building can be demolished. Therefore, every country requires fire resistance performance of structural elements. In case of column, fire protective thickness derived from a specific fire test using an horizontal furnace is allowed to apply any kinds of sections and lengths of column. However, the lengths and sections of the column in steel framed buildings are various. In this paper, to know the differences of fire performance of steel column according to variance of lengths, a maximum allowable stress, steel surface temperature history, deflection are calculated and the thickness of fire protective material for longer column(4700 mm) need to enforce about 10% more than shorter column (3500 mm).

  • PDF

A Study on the Prediction of Residual Strength of Concrete Filled Steel Tube Column without Fire Protective Coating by Unstressed Heating (비재하 가열에 의한 무내화피복 CFT 기둥의 잔존내력 예측에 관한 연구)

  • Kim, Gyu-Yong;Lee, Hyoung-Jun;Lee, Tae-Gyu;Kim, Young-Sun;Kang, Sun-Jong
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.31-39
    • /
    • 2009
  • Recently, fire resistance in high-rise building is becoming major problem socially. So it is need of hour to study on fire resistance in buildings. This study estimates fire resistance performance to utilized CFT (Concrete filled steel tube, below CFT) column in the high structure. But it is difficult quantitative evaluation about fire resistant performance of CFT. Therefore, this study made CFT specimen that determine the factor which is strength of concrete and then CFT column was exposed to heating controlled as closely as possible the ISO-834 standard fire curve. Also, tried to analyze internal temperature through nonlinear transient heat flow analysis. And, presumed extant compressive strength on the basis of this.

Evaluation of Wet-Mixed High Strength Sprayed Polymer Mortar for Fire Resistance (내화용 고강도 습식 스프레이 폴리머 모르타르의 화재 저항성 평가)

  • Won, Jong-Pil;Choi, Seok-Won;Park, Chan-Gi;Park, Hae-Kyun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.559-568
    • /
    • 2006
  • The purpose of this study is to evaluate the mechanical performance and fire resistance of wet-mixed high strength sprayed polymer-modified mortar in order to protect tunnel lining system which are in the event of fire disaster. Since the current commercial fire-resistant materials reproduce the low strength issue of mortar, this study aims to provide an enhanced fire-resistant mortar with a proper strength. Normally, a large temperature gradient phenomenon arise in the vicinity of free surfaces which are fully exposed in the event of persistent flame. Thereby, the determination of optimal cover depth of wet-mixed high strength sprayed polymer-mortar(WHSPM) is important for fire-resistance of tunnel lining system. With comparison of current commercial fire-resistance materials and WHSPM, the experimental result of WHSPM shows the better fire-resistant performance than the others. In addition, the cover limitation should be controlled by minimum 4cm depth in order to avoid fire-induced damage.

Evaluation on Sensitivity and Approximate Modeling of Fire-Resistance Performance for A60 Class Deck Penetration Piece Using Heat-Transfer Analysis and Fire Test

  • Park, Woo Chang;Song, Chang Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.141-149
    • /
    • 2021
  • The A60 class deck penetration piece is a fire-resistance apparatus installed on the deck compartment to protect lives and to prevent flame diffusion in the case of a fire accident in a ship or offshore plant. In this study, the sensitivity of the fire-resistance performance and approximation characteristics for the A60 class penetration piece was evaluated by conducting a transient heat-transfer analysis and fire test. The transient heat-transfer analysis was conducted to evaluate the fire-resistance design of the A60 class deck penetration piece, and the analysis results were verified via the fire test. The penetration-piece length, diameter, material type, and insulation density were used as the design factors (DFs), and the output responses were the weight, temperature, cost, and productivity. The quantitative effects of each DF on the output responses were evaluated using the design-of-experiments method. Additionally, an optimum design case was identified to minimize the weight of the A60 class deck penetration piece while satisfying the allowable limits of the output responses. According to the design-of-experiments results, various approximate models, e.g., a Kriging model, the response surface method, and a radial basis function-based neural network (RBFN), were generated. The design-of-experiments results were verified by the approximation results. It was concluded that among the approximate models, the RBFN was able to explore the design space of the A60 class deck penetration piece with the highest accuracy.

Fire Resistance of U-shape Hybrid Composite Beam (신형상 U형 하이브리드 합성보의 내화성능에 관한 연구)

  • Kim, Sung Bae;Kim, Sang Seup;Ryu, Deog Su;Choi, Seng Kwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.379-388
    • /
    • 2013
  • This paper aims to experimentally investigate the fire resistance of U-shaped hybrid composite beams protected by spay and paint insulations. Subjected to two and three hours of the Standard ISO fire, the flexural performance of 4.4m beams with/without imposed loadings was examined with respect to failure criteria such as deflection and deflection rate of the mid-span and temperatures measured in the steel section. The results demonstrated that the proposed configuration of the composite beam is able to achieve a very competitive 3-hour fire resistance rating in economical aspects.