• 제목/요약/키워드: Finite-time Sliding Mode Control

검색결과 29건 처리시간 0.035초

An Adaptive Tracking Controller for Vibration Reduction of Flexible Manipulator

  • Sung Yoon-Gyeoung;Lee Kyu-Tae
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권3호
    • /
    • pp.51-55
    • /
    • 2006
  • An adaptive tracking controller is presented for the vibration reduction of flexible manipulator employed in hazardous area by combining input shaping technique with sliding-mode control. The combined approach appears to be robust in the presence of severe disturbance and unknown parameter which will be estimated by least-square method in real time. In a maneuver strategy, it is found that a hybrid trajectory with a combination of low frequency mode and rigid-body mode results in better performance and is more efficient than the traditional rigid body trajectory alone which many researchers have employed. The feasibility of the adaptive tracking control approach is demonstrated by applying it to the simplified model of robot system. For the applications of the proposed technique to realistic systems, several requirements are discussed such as control stability and large system order resulted from finite element modeling.

Variable Structure Model Reference Adaptive Control, for SIMO Systems

  • mohammadi, Ardeshir Karami
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1987-1992
    • /
    • 2004
  • A Variable Structure Model Reference Adaptive Controller (VS-MRAC) using state Variables is proposed for single input multi output systems. . The structure of the switching functions is designed based on stability requirements, and global exponential stability is proved. Transient behavior is analyzed using sliding mode control and shows perfect model following at a finite time. The effect of input disturbances on stability and transients is investigated and shows preference to the conventional MRAC schemes with integral adaptation law. Sliding surfaces are independent of system parameters and therefore VS-MRAC is insensitive to system parameter variations. Simulation is presented to clear the theoretical results.

  • PDF

Adaptive nonsingular sliding mode based guidance law with terminal angular constraint

  • He, Shaoming;Lin, Defu
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권2호
    • /
    • pp.146-152
    • /
    • 2014
  • In this paper, a new adaptive nonsingular terminal sliding mode control theory based impact angle guidance law for intercepting maneuvering targets was documented. In the design procedure, a new adaptive law for target acceleration bound estimation was presented, which allowed the proposed guidance law to be used without the requirement of the information on the target maneuvering profiles. With the aid of Lyapunov stability criteria, the finite-time convergent characteristics of the line-of-sight angle and its derivative were proven in theory. Numerical simulations were also performed under various conditions to demonstrate the effectiveness of the proposed guidance law.

슬라이딩 모드 및 모델 예측 직렬형 제어기를 이용한 영구자석형 동기전동기의 속도제어 (Velocity Control of Permanent Magnet Synchronous Motors using Model Predictive and Sliding Mode Cascade Controller)

  • 이일로;이영우;신동훈;정정주
    • 제어로봇시스템학회논문지
    • /
    • 제21권9호
    • /
    • pp.801-806
    • /
    • 2015
  • In this paper, we propose cascade-form velocity controller for a permanent magnet synchronous motor (PMSM). The proposed controller consists of a sliding-mode controller (SMC) for the inner current control loop and a model-predictive controller (MPC) for the outer velocity control loop. With SMC, we can ensure that the current tracking error always converges to zero in finite time. The SMC is designed to track the desired currents. Additionally, with MPC, we can obtain the optimal velocity control input which minimizes the cost function. Constraint conditions for input and input variation are included in the MPC design. The simulation results are included to validate the performance of the proposed controller.

2단 슬라이딩 제어기법을 이용한 인공위성의 궤도조정 (ORBITAL MANEUVER USING TWO-STEP SLIDING MODE CONTROL)

  • 박종옥;이상욱;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • 제15권1호
    • /
    • pp.235-244
    • /
    • 1998
  • 인공위성의 궤도조정에 사용되는 소모연료의 최적화를 위해, 비 선형 제어 시스템인 슬라이딩 제어 기법을 사용하여 지구 비대칭 중력장에 의해 섭동력을 고려한 궤도조정 문제의 해를 구하였다. 결합 방정식을 이용한 해법을 통해 총 속도 변화량이 최소가 되는 Lambert 궤도를 목표궤도로 설정하고 그에 따른 궤도조정 시간을 결정하였다. 결정된 궤도조정 시간이 종료되는 시점에서 제한된 추력에 의해 제어되는 인공위성의 상태 백터가 경계조건과 일치되도록 하기 위하여, 슬라이딩 제어를 반복적으로 사용하는 2단 슬라이딩 제어기법을 도입하였으며, 이를 인공위성 랑데뷰 문제에 적용하여 최적 에어방법에 의한 결과와 비교하였다. 새롭게 제안된 제어방법을 이용한 궤도조정은 이상적인 전이궤도인 Lambert 궤도와 근접한 궤도를 갖도록 하는 thrust-coast-thrust 형태의 추력을 나타내었으며, 이 때 필요한 속도의 변화량은 Lambert's two-impulsive 방법에 의한 값에 매우 근접한 값을 나타내었다. 또한 궤도조정 시간이 종료되었을 때, 궤도의 모든 상태변수들이 최종 경계조건과 거의 일치되는 결과를 얻을 수 있었다.

  • PDF

비선형 시스템에 대한 퍼지 도달 법칙을 가지는 가변 구조 제어 (Variable structure control with fuzzy reaching law method for nonlinear systems)

  • 사공성대;이연정;최봉열
    • 제어로봇시스템학회논문지
    • /
    • 제2권4호
    • /
    • pp.279-286
    • /
    • 1996
  • In this paper, variable structure control(VSC) based on reaching law method with fuzzy inference for nonlinear systems is proposed. The reaching law means the reaching condition which forces an initial state of system to reach switching surface in finite time, and specifies the dynamics of a desired switching function. Since the conventional reaching law has fixed coefficients, the chattering can be existed largely in sliding mode. In the design of a proposed fuzzy reaching law, we fuzzify RP(representative point)'s orthogonal distance to switching surface and RP's distance the origin of the 2-dimensional space whose coordinates are the error and the error rate. The coefficients of the reaching law are varied appropriately by the fuzzy inference. Hence the state of system in reaching mode reaches fastly switching surface by the large values of reaching coefficients and the chattering is reduced in sliding mode by the small values of those. And the effectiveness of the proposed fuzzy reaching law method is showen by the simulation results of the control of a two link robot manipulator.

  • PDF

강인 적응성 슬라이딩을 이용한 PMSM 서보드라이브 시스템 제어기 (Robust Adaptive Sliding Mode Controller for PMSM Servo Drives System)

  • 박기광;한병조;김홍필;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1640_1641
    • /
    • 2009
  • Dynamic friction and force ripple are the most predominant factors that affect the positioning accuracy of permanent magnet synchronous motor(PMSM) servo drives system, and it is desirable to compensate them in finite time with a continuous control law. In this paper, based on LuGre dynamic friction model, a robust adaptive skidding mode controller is proposed to compensate the nonlinear effect of friction and force ripple. The controller scheme consists of a PD component and a robust adaptive sliding mode controller for estimating the unknown system parameter. Using Lyapunov stability theorem, asymptotic stability analysis and position tracking performance are guaranteed. Simulation results well verify the feasibility and the effectiveness of the proposed scheme for high0precision motion trajectory tracking.

  • PDF

SMA작동기와 연계된 HDD슬라이더의 동특성 및 제어 (Dynamic Characteristics and Control of HDD Slider Integrated with SMA Actuator)

  • 임수철;박종성;박철진;최승복;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.217-224
    • /
    • 2000
  • This paper proposes a new type of HDD suspension integrated with shape memory alloy(SMA) actuator in order to prevent the friction between the slider and the disk. A finite element analysis is undertaken to investigate modal characteristics of the proposed self loading/unloading slider. The dynamic model is formulated and its validity is proved by comparing the predicted displacement transmissibility with the measured one. A control model is then established by integrating experimentally-obtained SMA actuator dynamics. Subsequently, a sliding mode controller is designed to achieve non-contact start/stop(Non CSS) modes, and control results are presented in time domain.

  • PDF

A computational analysis of the scarf angle on a composites repair

  • Kim, Yun-Hae;Jo, Young-Dae;Murakami, Ri-Ichi
    • International Journal of Ocean System Engineering
    • /
    • 제1권1호
    • /
    • pp.9-15
    • /
    • 2011
  • This study examined the relationship between the scarf angle and stress distribution, and estimated the strength recovery via a finite element analysis. The following conclusions were drawn from this study. Resin will fracture due to a tensile load with a high scarf angle, which is similar to the patch repair method. An applied stress can be loaded to a repaired laminate if the scarf angle is $5^{\circ}$. The Von-Mises stress increases with decreasing scarf angle, with the exception of a scarf angle of $30^{\circ}$, where the scarf angle can indicate the rates of shear and normal stresses. Strength recovery can be better if the scarf angle is decreased to a lower angle. However, scarf machining requires more time, a high skill level and considerable expense. Therefore, a scarf angle of $5^{\circ}$ is the most effective for a repair. These results may provide a guide for engineers wishing to formulate a standard for repair. The scarf angle needs to be carefully managed for a more efficient composite repair.