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Abstract

In this paper, a new adaptive nonsingular terminal sliding mode control theory based impact angle guidance law for 

intercepting maneuvering targets was documented. In the design procedure, a new adaptive law for target acceleration bound 

estimation was presented, which allowed the proposed guidance law to be used without the requirement of the information 

on the target maneuvering profiles. With the aid of Lyapunov stability criteria, the finite-time convergent characteristics of 

the line-of-sight angle and its derivative were proven in theory. Numerical simulations were also performed under various 

conditions to demonstrate the effectiveness of the proposed guidance law.
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1. Introduction

Proportional navigation guidance (PNG) law and 

its variants have been widely used for tactical missiles 

in the past few decades due to their efficient and easy 

implementation [1-3]. For non-maneuverable or weakly 

maneuverable targets, the classical PNG law is proven to 

be optimal for minimization of both the miss distance and 

energy consumption [4]. However, as the maneuverability 

of a target increases, the performance of PNG becomes 

worse, and lacks robustness [2]. For the interception of 

agile targets, many effective guidance laws have been 

reported in the literature. One study proposed a novel 

H∞ nonlinear guidance law, which does not require the 

information about the target acceleration [5]. However, the 

implementation of this guidance law requires the associated 

Hamilton-Jacobi partial differential inequality to be solved. 

By regarding target acceleration as a completely unknown 

but bounded disturbance, a disturbance attenuation L2 

index was formulated in [6] to derive a robust guidance 

law based on nonlinear missile-target relative dynamics. 

In [7], by solving the linear matrix inequalities from a pole 

placement problem, the authors examined a Lyapubov-

based nonlinear guidance law, where the state of the 

guidance system was proven to converge into a compact 

set. However, although the convergent rate could be tuned 

by appropriate pole selections, only asymptotic stability was 

demonstrated for both the non-maneuvering and constantly 

maneuvering targets. The authors in [8] utilized the receding 

horizon control method to obtain a general guidance law, 

demonstrating the possibility for online optimization of 

the guidance law by using a differential flatness concept 

to decrease dimensional space and b-spline curves to 

approximate the flat output. In [9], the authors researched 

a robust proportional navigation guidance (RPNG) based 

on the sliding mode control (SMC) theory for intercepting 

maneuvering targets, in which a first order autopilot lag was 

also considered. In [10], the authors adopted integral sliding 

mode control (ISMC) theory, which does not require any 

reaching phase, to derive an augmented 3D true PNG law for 

highly maneuverable targets.

For modern application, guidance law with terminal 

impact angle constraint has been extensively studied 

by many researchers to increase the effectiveness of 

the warhead carried by the missiles. The authors in 

[11] proposed a suboptimal guidance law for reentry 
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vehicles with impact angle constraint to intercept non-

maneuvering targets, which seems to be the first attempt 

to address the problem in this area. For stationary targets, 

a polynomial impact angle guidance law was proposed 

in [12], which was derived from the solution of a linear 

quadratic optimal control problem with the energy cost 

weighted by the power of time-to-go. The authors in [13] 

extended the results in [12] to enhance target observability 

and seeker’s field-of-view limit. In [14], the authors derived 

a generalized impact angle guidance law, which consists 

of the position and velocity error feedback terms. In [15], 

a novel sliding mode control based impact angle guidance 

law was presented for maneuvering targets. With the aid of 

the state-dependent-riccati-equation (SDRE) technique, 

the authors in [16] derived a new guidance law to satisfy 

the terminal angle constraint. In [17], the authors used the 

newly-developed Model Predictive Static Programming 

(MPSP) technique to derive a suboptimal 3D impact angle 

guidance law. A novel circular navigation guidance (CNG) 

impact angle guidance law was developed in [18], which 

directs the missile to follow a pre-designated circular arc 

to the target. For large impact angles, the authors in [19] 

designed a new bias-PNG law along with a novel time-to-

go estimation algorithm.

This paper considers the application of nonsingular 

terminal sliding mode (NTSM) control [20] to guidance 

law design with a terminal angle constraint for intercepting 

maneuvering targets. Compared with the traditional 

terminal sliding mode (TSM)-based guidance law, the 

proposed method does not exhibit any singularity problem 

in the control signal. By virtue of the new adaptive law, no 

information on the target maneuvering profile is required. 

Using Lyapunov stability criteria, we proved that both the 

line-of-sight (LOS) angle and its derivative can converge to 

their corresponding desired value in finite time. Since the 

flight time is usually very short during the terminal guidance 

phase, the finite-time convergent characteristic is crucial 

for precise interception. Because of the principle of NTSM, 

the proposed guidance law has satisfactory performance of 

compensation for target maneuvering. Compared with some 

other existing impact angle guidance laws, the proposed 

method does not require the estimation of time-to-go, which 

plays an important role in most of the optimal impact angle 

guidance laws mentioned above. These aspects set this work 

apart from the existing literature.

This paper was organized as follows. Sec. 2 provides 

the nonlinear homing engagement geometry. The main 

results are then presented in Sec. 3, while numerical 

simulations are given in Sec. 4. Finally, some conclusions 

are offered.

2. Problem Formulation

The planar homing engagement geometry between 

the missile and the target is depicted in Fig. 1, where the 

subscripts M and T denote the missile and the target; 
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where r0 denotes the initial relative range between the 

missile and the target.

Note that 1-ρ<0, we can obtain:
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2 2

p
q

p KV x s
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             (26) 

If 0s  , it follows from Eq. (24) that 

 
2

ˆcos

ˆ

0

T Ta Kx
r r r

K
r r r

  



 
  

 
  



            (27) 
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If s>0, it follows from Eq. (24) that:
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If 0s  , it also follows from Eq. (24) that 
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If s<0, it also follows from Eq. (24) that:
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Therefore, 2 0x   for all 0s  , which shows that 2 0x   is not an attractor. 

In the sliding phase ( 0s  ) 

 1 2 2sgn 0x x x               (29) 

If 2 0x  , it is easily to verify that 

 2 1 1sgnx x x               (30) 

where 0
q
p 


  , 0q

p
   . 

Finally, consider 2
3 1 / 2V x  as a Lyapunov function candidate. Evaluating 3V  along the 

trajectory (29) and substituting Eq. (30) into it gives 

1
3 1 0V x                  (31) 

Therefore, the states of system (11) can converge to zero along the sliding surface (12) in finite time. 

This completes the proof. 

Remark 1. Due to the existence of a discontinuous sign function in the control law, high frequency 

chattering will be excited in real application. In order to handle this problem, we choose a continuous 

saturation function 

 
 sgn ,

sat ,
,

s s
s s s







 
 



            (32) 

to replace the sign function. 

Remark 2. Since the boundary layer technique is introduced in Remark 1 to suppress chattering, s  

will converge into a boundary layer instead of zero. To avoid the adaptation parameter ̂  increasing 

boundlessly, a modified adaptive law is presented as: 

(28)

Therefore, 
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will converge into a boundary layer instead of zero. To avoid the adaptation parameter ̂  increasing 

boundlessly, a modified adaptive law is presented as: 
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where   is a small positive constant. 
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where /got r r   denotes the remaining flight time. Thus, the acceleration command (13) can be 

regarded as a pseudo proportional navigation guidance (PNG) law with a time-varying navigation 

ratio 
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  and some additional terms. 

 

4. Simulation Results 

In this section, the performance of the proposed guidance law is verified via numerical simulations 

under various conditions. The design parameters in Eq. (13) are selected as: 1  , 7p  , 5q  , 

1800K  , 0.05  , 0.01  , 2  ,  ˆ 0 100  . These parameters, not unique, are observed 

to result in satisfactory results in our simulations. In all simulations, the acceleration command is 

saturated by 20g , where g  denotes the gravitational acceleration constant. The initial conditions 

are selected as: 1) missile velocity: 800m/s; 2) target velocity: 450m/s; 3) missile initial flight path 

angle: 45°; 4) target initial flight path angle: 180°; 5) missile initial position: (0, 0); 6) target initial 

position: (20000m, 20000m). The following 4 cases are considered in our simulations. 

Case 1): the target maneuvering profile is selected as   2100sin m / sTa t  and the desired 

terminal LOS angle is 0°; 

Case 2): the target maneuvering profile is selected as   2100sin m / sTa t  and the desired 

terminal LOS angle is 90°; 

Case 3): the target performs sudden maneuvers as Fig. 2 and the desired terminal LOS angle is 0°; 

(33)
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terminal LOS angle is 0°; 

Case 2): the target maneuvering profile is selected as   2100sin m / sTa t  and the desired 

terminal LOS angle is 90°; 

Case 3): the target performs sudden maneuvers as Fig. 2 and the desired terminal LOS angle is 0°; 

=0.05, δ=0.01, ρ=2, 
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where   is a small positive constant. 

Remark 3. Note that the first two terms in equation (13) can be rewritten as 
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      (34) 

where /got r r   denotes the remaining flight time. Thus, the acceleration command (13) can be 

regarded as a pseudo proportional navigation guidance (PNG) law with a time-varying navigation 

ratio 
1

22
p
q

go
q t x
p

  and some additional terms. 

 

4. Simulation Results 

In this section, the performance of the proposed guidance law is verified via numerical simulations 

under various conditions. The design parameters in Eq. (13) are selected as: 1  , 7p  , 5q  , 

1800K  , 0.05  , 0.01  , 2  ,  ˆ 0 100  . These parameters, not unique, are observed 

to result in satisfactory results in our simulations. In all simulations, the acceleration command is 

saturated by 20g , where g  denotes the gravitational acceleration constant. The initial conditions 

are selected as: 1) missile velocity: 800m/s; 2) target velocity: 450m/s; 3) missile initial flight path 

angle: 45°; 4) target initial flight path angle: 180°; 5) missile initial position: (0, 0); 6) target initial 

position: (20000m, 20000m). The following 4 cases are considered in our simulations. 

Case 1): the target maneuvering profile is selected as   2100sin m / sTa t  and the desired 

terminal LOS angle is 0°; 

Case 2): the target maneuvering profile is selected as   2100sin m / sTa t  and the desired 

terminal LOS angle is 90°; 

Case 3): the target performs sudden maneuvers as Fig. 2 and the desired terminal LOS angle is 0°; 

=100. 

These parameters were observed to provide satisfactory 

results in our simulations. The initial conditions were 

selected as: 1) missile velocity: 800m/s; 2) target velocity: 

450m/s; 3) missile initial flight path angle: 45°; 4) target 

initial flight path angle: 180°; 5) missile initial position: 

(0, 0); 6) target initial position: (20000m, 20000m). In all 

simulations, the acceleration command was saturated at 

20g, where g denotes the gravitational acceleration constant. 

The following 4 cases were considered in the simulations.

Case 1): the target maneuvering profile was selected as 

aT=100sin(t)m/s2, and the desired terminal LOS angle was 0°;

Case 2): the target maneuvering profile was selected as 

aT=100sin(t)m/s2, and the desired terminal LOS angle was 

90°;

Case 3): the target performs sudden maneuvers as in Fig. 

2, and the desired terminal LOS angle is 0°;

Case 4): the target performs sudden maneuvers as in Fig. 

2, and the desired terminal LOS angle is 90°.

The simulation results for cases 1)-4) are plotted in 

Figs. 3-5, Figs. 6-8, Figs. 9-11 and Figs. 12-14, respectively. 

From these figures, it can be seen that interception can 

be achieved, whatever the desired terminal LOS angles 

and the target maneuvering profiles are. Clearly, the LOS 

angle and the LOS angular rate could converge to their 
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Fig. 9. Missile flight trajectory   Fig. 10. Acceleration command   Fig. 11. LOS angle profiles 
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corresponding desired values in finite time, and the design 

parameters mentioned above can be tuned to regulate the 

convergence rate. Furthermore, due to the use of boundary 

layer technique, no chattering occurs in the control channel.

5. Conclusion

This paper presented a new adaptive NTSM based guidance 

law with terminal angle constraints for maneuvering targets. 

By virtue of the new adaptive law, no information about 

the target maneuvering is required for implementation of 

the proposed guidance law. Using Lyapunov method, the 

finite-time convergence of the closed loop guidance system 

was guaranteed. Furthermore, this kind of guidance law can 

be used for target observability enhancement via the LOS 

angular rate shaping approach. Future works includ adding 

other constraints, such as impact time, into the proposed 

method. 
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