• 제목/요약/키워드: Finite-element Method (FEM)

검색결과 3,131건 처리시간 0.029초

강성계수의 전달을 이용한 횡방향 하중을 받는 축대칭 원판의 정적해석 (Static Analysis of Axisymmetric Circular Plates under Lateral Loading Using Transfer of Stiffness Coefficient)

  • 최명수;여동준
    • 동력기계공학회지
    • /
    • 제18권6호
    • /
    • pp.64-69
    • /
    • 2014
  • A circular plate is one of the important structures in many industrial fields. In static analysis of a circular plate, we may obtain an exact solution by analytical method, but it is limited to a simple circular plate. Thus, many researchers and designers have used numerical methods such as the finite element method. The authors of this paper developed the finite element-transfer stiffness coefficient method (FE-TSCM) for static and dynamic analyses of various structures. FE-TSCM is the combination of the modeling technique of the finite element method (FEM) and the transfer technique of the transfer stiffness coefficient method (TSCM). FE-TSCM has the advantages of both FEM and FE-TSCM. In this paper, the authors formulate the computational algorithm for the static analysis of axisymmetric circular plates under lateral loading using FE-TSCM. The computational results for three computational models obtained by FE-TSCM are compared with those obtained by FEM in order to confirm the accuracy of FE-TSCM.

강성계수의 전달에 의한 평판 구조물의 구조해석 (Structural Analysis of Plate Structures by Transfer of Stiffness Coefficient)

  • 최명수
    • 동력기계공학회지
    • /
    • 제11권1호
    • /
    • pp.92-97
    • /
    • 2007
  • It is important to compute the structural analysis of plate structures in structural design. In this paper, the author uses the finite element-transfer stiffness coefficient method (FE-TSCM) for the structural analysis of plate structures. The FE-TSCM is based on the concept of the successive transmission of the transfer stiffness coefficient method and the modeling technique of the finite element method (FEM). The algorithm for in-plane structural analysis of a rectangular plate structure is formulated by using the FE-TSCM. In order to confirm the validity of the FE-TSCM for structural analysis of plate structures, two numerical examples for the in-plane structural analysis of a plate with triangular elements and the bending structural analysis of a plate with rectangular elements are computed. The results of the FE-TSCM are compared with those of the FEM on a personal computer.

  • PDF

센서재료용 일렉트렛트의 코로나 대전 과정 시뮬레이션 (Simulation of Corona Charging Process in Electret for Sensor Materials)

  • 박건호
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2012년도 제46차 하계학술발표논문집 20권2호
    • /
    • pp.421-422
    • /
    • 2012
  • 본 연구에서는 코로나 대전된 고분자의 열자격전류(Thermally Stimulated Current; 이하 TSC) 데이터를 기반으로 코로나 대전 과정을 유한요소법(Finite Element Method; 이하 FEM)을 이용하여 시뮬레이션하였다. $DC -5{\sim}-8[kV]$의 고전압을 고분자에 인가하여 형성시킨 일렉트렛트를 온도 범위 $-100{\sim}+200[^{\circ}C]$에서 얻은 TSC 데이터의 대전 과정을 조사하기 위하여 FEM으로 시뮬레이션을 수행하여 공간에서 코로나 대전 과정을 추정하였다.

  • PDF

Simulate of edge and an internal crack problem and estimation of stress intensity factor through finite element method

  • Yaylaci, Murat
    • Advances in nano research
    • /
    • 제12권4호
    • /
    • pp.405-414
    • /
    • 2022
  • In this study, the elastic plane problem of a layered composite containing an internal or edge crack perpendicular to its boundaries in its lower layer is examined using numerical analysis. The layered composite consists of two elastic layers having different elastic constants and heights. Two bonded layers rest on a homogeneous elastic half plane and are pressed by a rigid cylindrical stamp. In this context, the Finite Element Method (FEM) based software called ANSYS is used for numerical solutions. The problem is solved under the assumptions that the contacts are frictionless, and the effect of gravity force is neglected. A comparison is made with analytical results in the literature to verify the model created and the results obtained. It was found that the results obtained from analytical formulation were in perfect agreements with the FEM study. The numerical results for the stress-intensity factor (SIF) are obtained for various dimensionless quantities related to the geometric and material parameters. Consequently, the effects of these parameters on the stress-intensity factor are discussed. If the FEM analysis is used correctly, it can be an efficient alternative method to the analytical solutions that need time.

구조-음향계의 정상상태 응답예측을 위한 유한요소법과 경계요소법의 응용 (Applicatio of Finite Element and Boundary Element Methods to Predict Steady-State Response of a Structure-Acoustic-Cavity System)

  • 이장명
    • 대한기계학회논문집A
    • /
    • 제20권5호
    • /
    • pp.1383-1391
    • /
    • 1996
  • The steady-state response for a coupled structure-acoustic-cavity systme has been investigated by numerical technique using a directly coupled finite element method(FEM) and Boundary Element Method(BEM) model. The Laplace tranformed matrix equations for the structure and the acoustic cavity are coupled directly satisfying the necessary equilibrium and compatibility conditions. The coupled FEM-BEM code is verified by comparing its prediction for an example with known analytical, numerical and experimental results. The example involves a coupled structure-acoustic-cavity system which is a box-type cavity with one end as experimentally excited pinned-pinned plate.

스펙트럴요소법을 이용한 내부유동 포함된 파이프 진도해석 (Spectral Element Analysis of the Pipeline Conveying Internal Flow)

  • 강관호;이우식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.207-212
    • /
    • 2001
  • This paper considers a pipeline conveying one-dimensional unsteady flow inside. The dynamics of the fluid-pipe system is represented by two coupled equations of motion for the transverse and axial displacements, which are linearized from a set of partial differential equations which consists of the axial and transverse equations of motion of the pipeline and the equations of momentum and continuity of the internal flow. Because of the complex nature of fluid-pipe interactive mechanism, a very accurate solution method is required to get sufficiently accurate dynamic characteristics of the pipeline. In the literatures, the finite element models have been popularly used for the problems. However, it has been well recognized that finite element method (FEM) may provide poor solutions especially at high frequency. Thus, in this paper, a spectral element model is developed for the pipeline and its accuracy is evaluated by comparing with the solutions by FEM.

  • PDF

피스톤에 의해 유입되는 유동에 대한 유한요소법을 이용한 수치해석 (Numerical Analysis for the Piston-Driven Intake Flows using the Finite Element Method)

  • 최종욱;박찬국
    • 한국전산유체공학회지
    • /
    • 제4권2호
    • /
    • pp.39-46
    • /
    • 1999
  • The FVM(Finite Volume Method) have been used mainly for the flow analyses in the piston-cylinder. The objective of the present study is to analyze numerically the piston-driven intake flows using the FEM(Finite Element Method). The FEM algorithm used in this study is 4-step time-splitting method which requires much less execution time and computer storage than the velocity-pressure integrated method and the penalty method. And the explicit Lax-Wendroff scheme is applied to nonlinear convective term in the momentum equations to prevent checkerboard pressure oscillations. Also, the ALE(arbitrary Lagrangian Eulerian) method is adopted for the moving grids. The calculated results show good agreement in comparison with those by the FVM and the experimental results by the LDA.

  • PDF

One-Step FEM을 이용한 초기 블랭크 형상 결정에 관한 연구 (The Determination of Initial Blank Shape by Using the One-Step FEM)

  • 정동원;이상제
    • 한국해양공학회지
    • /
    • 제13권3호통권33호
    • /
    • pp.21-28
    • /
    • 1999
  • In this paper, a finite element method for the determination of initial blank shape in sheet metal forming process will be introduced. The initial blank shape is determined by the only one step from the final to the initial blank. The used finite element inverse method adopted Henky's deformation theory, Hill's anisotropic yield criterion and simplified boundary conditions. Based on this theory. a three-dimensional membrane finite element code was developed. The developed code will be applied to several sheet metal forming examples for the demonstration of its validity.

  • PDF

Finite Element Method (FEM) Study on Space Charge Effects in Organic Light Emitting Diodes (OLED)

  • Kim, Kwang-Sik;Hwang, Young-Wook;Won, Tae-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제12권4호
    • /
    • pp.467-472
    • /
    • 2012
  • In this paper, we present a finite element method (FEM) study on the space charge effects in organic light emitting diodes. The physical model covers all the key physical processes in OLEDs, namely charge injection, transport and recombination, exciton diffusion, transfer and decay as well as light coupling, and thin-film-optics. The exciton model includes generation, diffusion, and energy transfer as well as annihilation. We assumed that the light emission originates from oscillation which thus is embodied as exciton in a stack of multilayer. We discuss the accumulation of charges at internal interfaces and their signature in the transient response as well as the electric field distribution. We also report our investigation on the influence of the insertion of the emission layer (EML) in the bilayer structure.

유한요소법에 의한 관재 하이드로포밍 공정 해석 및 설계를 위한 수치적 연구 (Numerical Study on Analysis and Design of Tube Hydroforming Process by the FEM)

  • 김정;강범수
    • 소성∙가공
    • /
    • 제11권4호
    • /
    • pp.302-311
    • /
    • 2002
  • A generalized numerical approach based on the finite element method to analysis and design of hydroforming process is proposed in this paper. The special attention is focused on comparison of an implicit and an explicit finite element method widely used for hydroforming simulation. Furthermore, in order to meet the increasing real needs for prediction of forming limit, a ductile fracture criterion combined with finite element method is introduced and then applied to hydroforming process of an automobile lower m Consequently, the numerical analysis and design for hydroforming process presented here will facilitate the development and application of the tube hydrofoniung process to a new level.