• Title/Summary/Keyword: Finite-element

Search Result 22,323, Processing Time 0.04 seconds

Sensitivity analysis for finite element modeling of humeral bone and cartilage

  • Bola, Ana M.;Ramos, A.;Simoes, J.A
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.3 no.2
    • /
    • pp.71-84
    • /
    • 2016
  • The finite element method is wide used in simulation in the biomechanical structures, but a lack of studies concerning finite element mesh quality in biomechanics is a reality. The present study intends to analyze the importance of the mesh quality in the finite element model results from humeral structure. A sensitivity analysis of finite element models (FEM) is presented for the humeral bone and cartilage structures. The geometry of bone and cartilage was acquired from CT scan and geometry reconstructed. The study includes 54 models from same bone geometry, with different mesh densities, constructed with tetrahedral linear elements. A finite element simulation representing the glenohumeral-joint reaction force applied on the humerus during $90^{\circ}$ abduction, with external load as the critical condition. Results from the finite element models suggest a mesh with 1.5 mm, 0.8 mm and 0.6 mm as suitable mesh sizes for cortical bone, trabecular bone and humeral cartilage, respectively. Relatively to the higher minimum principal strains are located at the proximal humerus diaphysis, and its highest value is found at the trabecular bone neck. The present study indicates the minimum mesh size in the finite element analyses in humeral structure. The cortical and trabecular bone, as well as cartilage, may not be correctly represented by meshes of the same size. The strain results presented the critical regions during the $90^{\circ}$ abduction.

A Study on the Criterion for Membrane/Shell Mixed Element and Application to the Rigid-Plastic/Elastic-Plastic Finite Element Analysis (박막/쉘 혼합요소의 판별조건과 강소성/탄소성 유한요소해석 적용에 관한 연구)

  • Jung, Dong-Won;Yang, Kyoung-Boo
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.1-10
    • /
    • 1999
  • This study is concerned with the application of new criterion for membrane/shell mixed element in the rigid-plastic finite element analysis and elastic-plastic finite element analysis. The membrane/shell mixed element can be selctively adapted to the pure stretching condition by using membrane or a shell element in the bending effect areas. Thus, membrane/shell mixed element requires a efficient criterion for a distinction between membrane and shell element. In the present study introduce the criterion using the angle of between two element and confirm a generality of criterion from appling the theory to a rigid-plastic and elastic-plastic problems.

  • PDF

Updating of Finite Element Model and Joint Identification with Frequency Response Function (주파수응답함수를 이용한 유한요소모델의 개선 및 결합부 동정)

  • 서상훈;지태한;박영필
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.61-69
    • /
    • 1997
  • Despite of the development in the finite element method, it is difficult to get the finite element model describing the dynamic characteristics of the complex structure exactly. Therefore a number of different methods have been developed in order to update the finite element model of a structure using vibration test data. This paper outlines the basic formulation for the frequency response function based updating method. One important advantage of this method is that the intermediate step of performing an eigensolution extraction is unnecessary. Using simulated experimental data, studies are conducted in the case of 10 DOF discrete system. The solution of noisy and incomplete experimental data is discussed. True measured frequency response function data are used for updating the finite element model of a beam and a plate. Its applicability to the joint identification is also considered.

  • PDF

A STRESS ANALYSIS FOR A COATED FUEL PARTICLE OF A HTGR USING A FINITE ELEMENT METHOD

  • Kim, Young-Min;Cho, Moon-Sung
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1087-1100
    • /
    • 2009
  • A finite element method utilizing the Galerkin form of the weighted residuals procedure was developed to estimate the mechanical behavior for a coated fuel particle (CFP) of a high temperature gas-cooled reactor (HTGR). Through a weak formulation, finite element equations for multiple layers were set up to calculate the displacements and stresses in a CFP. The finite element method was applied to the stress analyses for three coating layers of a tri-isotropic coated fuel particle (TRISO) of a HTGR. The stresses calculated by the finite element method were in good agreement with those from a previously developed computer code and depicted the typical stress behavior of the coating layers very well. The newly developed finite element method performs a stress analysis for multiple bonded layers in a CFP by changing the material properties at any position in the layers during irradiation.

DIGITAL IMAGE HANDLING BY FINITE ELEMENT RETINA FOR PLANT GROWTH MONITORING

  • Murase, Haruhiko;Nishiura, Yoshifumi
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.765-772
    • /
    • 1996
  • Objectives of this study were to develop an application method of a numerical retina using the finite element model and to investigate the performance of image features extraction in comparison to the textural analysis. Using a plant community of radish sprouts, excellent resolution of the finite element retina was revealed. The sensitivity analysis of the finite element retina from engineering point of view was discussed. The importance of sensitivity analysis of the finite element retina was pointed out in terms of extraction of effective image features of plant community . Technical details of maximizing the sensitivity of the finite element retina to populated plant canopy were also discussed.

  • PDF

A Study on the Bending Analysis of Rectangular Plates by Substructuring Technique (분할구조기법을 이용한 장방형판의 휨해석에 관한 연구)

  • 오숙경;김성용;김일중;이용수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.65-72
    • /
    • 1997
  • This study is the bending analysis of rectangular plates with 4-sides simply supported by Finite Element Method using substructuring technique. In finite element method, as the more number of finite element, the more dimension of matrix, it is difficult to obtain accuracy solution. In this paper substructuring technique is applied to finite element method in order to reduce the dimension of matrix according to the number of finite element mesh. To validate finite element method using substructuring technique, deflections and moments of rectangular plates by that method is compared with those of references. Considering the symmetry of the plate and load, one fourth of plate is analyzed. Operating time and the error of solutions according to the number of finite element mesh and substructure are compared with each other.

  • PDF

Analysis of Ultrasonic Linear Motor Using the Finite Element Method and Equivalent Circuit

  • Park, Jong-Seok;Joo, Hyun-Woo;Lee, Chang-Hwan;Jung, Hyun-Kyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.4
    • /
    • pp.159-164
    • /
    • 2003
  • In this paper, a three-dimensional finite element method and construction of equivalent-circuit for a linear ultrasonic motor are presented. The validity of three-dimensional finite element routine in this paper is experimentally confirmed by analyzing impedance of a piezoelectric transducer. Using this confirmed finite element routine, impedance and vibration mode of a linear ultrasonic motor are calculated. Elliptical motion of contact point between vibrator and rail of the linear ultrasonic motor is shown for determination of contact points. By using the finite element method and analytic equations, characteristics of the linear ultrasonic motor, such as thrust force, speed, losses, powers and efficiency, are calculated. The results are confirmed by experiment. Finally, equivalent circuit parameters of the linear ultrasonic motor are obtained using the three-dimensional finite element method and analytic equations.

Verification of the Finite Element Model of an Automotive Exhaust System Using Modal Testing (Modal Testing을 이용한 자동차 배기계의 유한요소 모델 검증)

  • 조민호;정해일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.665-670
    • /
    • 2001
  • The purpose of this paper is to verify a finite element model of an automotive exhaust system using Modal testing. In general, a lot of finite element models are used in initial design step of automotive development. One of them is a finite element model of an exhaust system. Verification on the finite element model of an automotive exhaust system is indispensable. In this paper, a finite element analysis on the exhaust system using MSC/NASTRAN is carried out, and the results are compared with those obtained by modal testing. By comparing MAC values of the analytical modes with the experimental modes, the finite element model of the automotive exhaust system is verified.

  • PDF

Vibration Analysis of HDD Actuator with Equivalent Finite Element Model of VCM Coil

  • Kim, Dong-Woohn;Lee, Jin-Koo;Park, No-Cheol;Park, Young-Pil
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.679-690
    • /
    • 2003
  • As the rate of increase in areal density of the HDD has accelerated, dynamic characteristics of the HDD actuator need to be improved with respect to the performance of the tracking servo and shock transmission. Therefore, it is important to analyze the vibration characteristic of the HDD actuator that consists of the VCM part, E-block and pivot bearing. In this paper, vibration modes of the HDD actuator are investigated the using finite element and experimental modal analyses methods. To develop a detailed finite element model, finite element models of each components of the actuator assembly are constructed and tuned to the results of the EMA. The VCM coil is modeled as an equivalent finite element model that has an orthotropic material property using auto-model updating program. Auto-model updating program with improved sensitivity based iterative method is applied to build a detailed finite element model using the result of the EMA. A detailed finite element model of the HDD actuator is then constructed and analyzed.

Shear locking-free analysis of thick plates using Mindlin's theory

  • Ozdemir, Y.I.;Bekiroglu, S.;Ayvaz, Y.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.3
    • /
    • pp.311-331
    • /
    • 2007
  • The purpose of this paper is to study shear locking-free analysis of thick plates using Mindlin's theory and to determine the effects of the thickness/span ratio, the aspect ratio and the boundary conditions on the linear responses of thick plates subjected to uniformly distributed loads. Finite element formulation of the equations of the thick plate theory is derived by using higher order displacement shape functions. A computer program using finite element method is coded in C++ to analyze the plates clamped or simply supported along all four edges. In the analysis, 8- and 17-noded quadrilateral finite elements are used. Graphs and tables are presented that should help engineers in the design of thick plates. It is concluded that 17-noded finite element converges to exact results much faster than 8-noded finite element, and that it is better to use 17-noded finite element for shear-locking free analysis of plates. It is also concluded, in general, that the maximum displacement and bending moment increase with increasing aspect ratio, and that the results obtained in this study are better than the results given in the literature.