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ABSTRACT

Objectives of this study were to develop an application method of a numerical
retina using the finite element model and to investigate the performance of image
features extraction in comparison to the textural analysis. Using a plant community
of radish sprouts, excellent resolution of the finite element retina was revealed.
The sensitivity analysis of the finite element retina from engineering point of view
was discussed. The importance of sensitivity analysis of the finite element retina
was pointed out in terms of extraction of effective image features of plant
community. Technical details of maximizing the sensitivity of the finite element
retina to populated plant canopy were also discussed.
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INTRODUCTION

In a protected plant production system such as a plant factory, the control
applications have been limited to its environmental controls. The feedback control
technology for greenhouse environmental factors such as temperature, humidity,
radiation intensity, carbon dioxide concentration and so forth has been developed
and successfully implemented. The plant growth can be optimized or controlled by
adjusting the environmental factors. Plants respond to the change of environmental
parameters. For example, the stomata activity is sensitive to ambient humidity and
CO, concentration. The plant tissue rigidity is affected by the availability of water

at its root zone. Those environmental factors should be controlled based upon the
plant status responding to the environmental conditions. The development of bio-
response feedback control system has been a challenging task for plant production
engineers and scientists. The bio-response feedback control concept known as
speaking plant approach to environment control has been highlighted by

Hashimoto, et al. (1985).
Changes in appearance of a plant canopy due to the growth reflect tonal

variations over the community of plants. The tonal variation can be transformed
into pictorial information electronically in retrieval form. The some kind of image
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features can be related to the tonal characteristics of the plant canopy that also
substantially reflect the plant growth status. The textural analysis can be considered
as one of applicable techniques for extracting image features[Murase et al..(1994);
Haralick et al. (1973)]. Some of problems in implementing the textural analysis are
that there is too much flexibility to construct the co-occurrence matrix and the
construction of the co-occurrence matrix requires impractical long calculation time.
Broadly speaking, image features are any extractable measurement of use.
Examples of low-level image features are pixel intensities or geometric distances
between pixels. Features may also result from applying a feature extraction
algorithm or operator to the image data. In this study, the finite element algorithm
is use to extract image features (FE features;finite element features). In order to
achieve the aim of developing such a bio-response feedback control system, the
primary concern should be to develop a practical technique for monitoring plant
growth

TEXTURAL FEATURES

The texture-contex information is adequately specified by the matrix of relative
frequencies P;; with which two neighboring resolution cells separated by distance d
occur on the i 1mage one with gray tone i and the other with gray tone j as shown in
Fig. 1[Haralick et al. (1973)]. The joint probability density function is expressed by
the notation P(d q (1))-

In such a case that d=1 and 8=0, some of the textural features are calculated as
follows:

(a)Contrast:
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The performance or specification of the co-occurrence matrix can be set by
fixing d and O values. The choice of d and 6 values determines the sensitivity of
the textural features.

FINITE ELEMENT FEATURES

Figure 2 shows a schematic representation of the finite element image
processing grid proposed by Murase (1995) that converts pictorial image into non-
geometric image features numerically. This non geometric image feature can be
calculated based on the differences of gray level between every input node of the
finite element grid. Each of input nodes serves as a photosensitive receptor (retinal
cells). In practice, for instance, signals transferred from sensing elements of CCD
area array should be given to these input nodes. Nodal values of the output nodes
(Optic nerve cells) become the finite element features. Other nodes are boundary
nodes (Choroidal cells) on which boundary conditions are specified.

The algorithm to relate input and output signals of the finite element image
processing grid can be a linear mapping as described by a linear finite element
equation. In this research work, 2-D Poisson's equation was utilized as a
governing equation given by Eq.(4). The finite element equation used here is
expressed as Eq.(5). The basic mechanism of finite element image processing grid
for generating image features is the conversion of incident light intensity
distribution projected over the area comprising of finite element input nodes into a
vector form of image features distributed over the output nodes.

P pres
KX azx + Ky azy =Q C))

K, :information conductivity in x direction
:information conductivity in y direction

:potential
Q :constant )
: 1
A :
: 2
KK & ) ={ :
B :
C 3

. . (5)
[K]'lz inverse matrix of stiffness matrix

{A} : input vector

{1} :output vector (image features)
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The performance or specification of the finite element information processing
grid can be set by fixing K values and the node arrangement. The choice of K
values and the node arrangements determines the sensitivity of the grid. The K
value is usually taken as the unity. The number of nodes is depending on allowable
calculation capacity. The arrangement of nodes is arbitrary. However some trial
procedure is usually required to optimize the grid performance.

EXPERIMENT

A growth of a community of radish sprouts was observed. The change of
pictorial image due to the growth was recorded on a video tape. The digital image of
the community of radish sprouts was used to calculate the cooccurrence matrix and
also used for input data of a finite element retina. Fig. 3 shows the digital image of
growing radish sprouts taken every 24 hours after seeding. The image feature was
extracted from each of the five digital image frames shown in Fig.3.

Both of the finite element retina and the textural analysis were tested for
comparison. Only three parameters of textural features were calculated. They were
contrast, homogeneity and local homogeneity. One of the internal parameters
(distance , d) for the co-occurrence matrix required to calculate textural features
were set at three different values. They were 1, 5 and 10. The other parameter
(angle, 0) was kept constant (8=0). Five by five retinal array of the finite element
was used. Three nodes were allocated for the output of the finite element retina.
The nodal arrangement was varied to investigate the sensitivity and resolution of the
finite element retina. The value of information conductivity, K, was kept one.

RESULT AND DISCUSSION

Figure 4 shows that the textural features obtained from the digital image data
do not indicate any apparent consistency on the variation of plant pictorial image.
The result shows that the textural features have some strong dependency on the
internal parameter, d. Especially, the difference in behavior of the features due to
the variation of d value from 1 to 5 is remarkable. It seems that the use of textural
features for this particular problem will require to employ rather elaborate technique
to relate input-output relationships.

The variations of the finite element features extracted from pictorial image of a
community of growing radish sprouts as its appearance changed after seeding were
plotted in Fig.5. The obvious variational factor of the pictorial image of growing
radish sprouts is the increasing area of leaves. The change was fairly consistent as
shown in Fig. 5. The course of image feature variables for the finite element retina
seems reasonable. As indicated in Fig. 5, the arrangement of output node
locations and number of choroidal cells may improve the sensitivity and resolution
accuracy of the finite element features. In Fig. 5, the nodal arrangement of Retina 2
gives better resolution than Retina 1. In Retina 2, each output node is separated
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from other output cells by a choroidal cell. Retina 3 is much more sensitive than the
Retina 2. The reduction of number of choroidal cells makes the boundary constrain
less tight which increases the sensitivity of the retina. The comparison revealed that
both methods can be considered one of means to quantize variation of pictorial
image of plants. Their proportionality, resolutions and sensitivity depend on
parameters involved in their calculation procedure. For instance, the distance and
the angle which should be specified before finding the co-occurrence matrix affect
the final result of the textural features. The values of information conductivities in
finite element image processing grid should be also determined before finite element
calculation.

CONCLUSIONS

Calculation of the textural features requires much more time than that of the
finite element features. Optimized inverse stiffness matrix for the finite element
image features can be constructed by arranging the location of choroidal cells and
the optic nerve cells and the distribution of information conductivities in such a
manner that the potential gradient over the retinal plane is made steep. The finite
element retina has more advantages than the textural features in the application to
monitoring for the growth of a community of plants (output stability, Sensitivity,
resolution, comp-load)
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Fig. 2. Finite element image processing grid.
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Fig. 3. Digital images showing change in appearance of a community of radish
sprout.
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Fig. 4. Variation of textural features due to the change in appearance of a

community of radish sprouts.
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Fig. 5. Variation of finite element features due to the change in appearance ofa
community of radish sprouts.
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