A STRESS ANALYSIS FOR A COATED FUEL PARTICLE OF
A HTGR USING A FINITE ELEMENT METHOD

YOUNG MIN KIM® and MOON SUNG CHO

Korea Atomic Energy Research Institute

1045 Daedeok-daero, Yuseong-gu, Daejeon, 305-353, Korea
“Corresponding author. E-mail : nymkim@kaeri.re.kr

Received February 7, 2009
Accepted for Publication June 5, 2009

A finite element method utilizing the Galerkin form of the weighted residuals procedure was developed to estimate the
mechanical behavior for a coated fuel particle (CFP) of a high temperature gas-cooled reactor (HTGR). Through a weak
formulation, finite element equations for multiple layers were set up to calculate the displacements and stresses in a CFP.
The finite element method was applied to the stress analyses for three coating layers of a tri-isotropic coated fuel particle
(TRISO} of a HTGR. The stresses calculated by the finite element method were in good agreement with those from a
previously developed computer code and depicted the typical stress behavior of the coating layers very well. The newly
developed finite element method performs a stress analysis for multiple bonded layers in a CFP by changing the material

properties at any position in the layers during irradiation.
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1. INTRODUCTION

The HTGR fuel element called a pebble, or a compact
contains a very large number of CFPs in it. During a
reactor operation, the CFP generates heat through the
fission of nuclear material, accompanying a fission
product generation. The CFP should maintain its integrity
during its lifetime in order to contain the fission products.
However, it is exposed to many harmful thermal, chemical,
and mechanical environments in a fuel element which
can cause particle failure. The particle failure occurs
when the stresses developed in the coating layers of a
CFP exceed the strengths of the coating layers. Thus, it is
very important to estimate the stress distribution across
the coating layers of a CFP during a reactor operation.

Various analytical methods have been developed to
calculate the stresses of the coating layers of a CFP [1-5].
In the analytical methods have been solved coupled second-
order differential equations for radial displacements or
stress components. It has been known that the analytical
methods execute very quickly on a computer once their
solutions are derived. For that reason, they have been
preferred for the time-consuming estimation of the failure
probability of a batch of CFPs using a Monte Carlo method.
The solution procedures, however, are very complicated,
and they must be repeated every time the related boundary
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conditions are altered. Some numerical analyses using
general-purpose finite element software have been applied
to the verification of the analytical solutions and the stress
analysis for a CFP that is under asymmetrical conditions
such as de-bonding, cracking, or asphericity of a coating
layer [6-8]. These numerical methods usually require far
more time than the analytical solutions when they are
applied to the Monte Carlo calculation of the failure
probabilities.

The purpose of this study is to develop a stress analysis
method for a CFP which can be incorporated into a HTGR
fuel performance analysis code written in a programming
language. The method should be easily programmed for
use on a digital computer and applicable to any deformation
models and designs of a CFP. In this study, a finite element
method using the Galerkin form of the weighted residuals
procedure was selected as the stress analysis method for
a CFP. Its solution procedure is very simple and does not
need to be repeated every time the number of coating
layers changes as compared to the above-mentioned
analytical solutions. However, it is expected to be less
competitive for the calculation of a failure probability
using a Monte Carlo calculation. But the disadvantage is
offset by the fact that the calculation of a failure probability
can be complemented by relatively less time-consuming
alternatives such as a full integration method [9].
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2. NUMERICAL MODELING FOR A MECHANICAL
ANALYSIS

A TRISO consists of a fuel kernel, a low-density
pyrocarbon layer called a buffer, and three coating layers
as shown in Fig. 1. The coating layers consist of an inner
pyrocarbon (IPyC) layer, a silicon carbide (SiC) layer,
and an outer pyrocarbon (OPyC) layer. A gap can be
created between two layers due to the de-bonding of two
adjacent layers during irradiation. Under fast neutron
irradiation, the coating layers experience irradiation-

Fig. 1. A Tri-isotropic Coated Fuel Particle
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P = pressure (Z0)
r = radial coordinate
Fig. 2. A Spherical Shell under Pressure
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induced creep and irradiation-induced dimensional change.
The gas pressure due to carbon monoxide, carbon dioxide,
and fission gases and the contact pressure resulting from
‘kernel and coatings mechanical interactions’ (KCMIs)
are applied to the inner surface of the IPyC layer. An
ambient pressure is acting on the outer surface of the
OPyC layer by a matrix material surrounding a CFP.

2.1 A spherical Layer

Each coating layer of a TRISO in Fig. 1 can be assumed
to be a spherical shell under the pressures at its inner and
outer surfaces like in Fig. 2. Under irradiation, the shell
is assumed to experience elastic deformation, thermal
expansion, irradiation-induced dimensional change, and
irradiation-induced creep.

The stress-strain relation for the shell at fluence ¢ can
be represented in the following matrix equation.

[cHo}={e}-{e"}-{e"} {7} M

where

{0y1={0, 04}, {e}"={e, &4}, {e"}'={er €U},

emy=ter er}, {7y ={ey €},

and the matrix [C] is expresses as follows.

[C]=i[ 1 _2"] @

-V 1-v

The creep strain vector of a pyrocarbon is given as follows
[10].

{e} = [[Al{o}ar, 3)

where

[Al=k Llﬂ fﬂ @

For the spherical shell, the strain-displacement relationship
and the equilibrium equation are given respectively by
the following two equations [11].
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Differentiating Eq. (1) to (3) with respect to fluence gives

sllal Al =S} ). @)

Eq. (7) can be expanded into a finite difference equation
over a fluence interval as follows.

(o} =161 ({ae} " ~{ae"}" ~{ae"}" )+ (8] ()", ®)
where

[G1"=([C1" 88 $ AT,
[BI"=(GI™(C1™ (1 5)8 § L),
A 0= gor_ gt

0 for fully explicit method
£ =105 for Crank-Nicholson method,
1 for fully implicit method

{Ag}("):{g}(”)_{g}("-l)’ {Aeth}(n):{eth}(n)_{Eth}(m])’

{As.vw}(n):{Esw}(n)_{esw}(n—l).

Inserting Eq. (5) into Eq. (8) gives

()"
?ﬂ

=[G](”) EZ:‘ “[G](n) ({e}(::vl)+{ m} {A m}“”) m w 1>’
B 9

where u = 1 and r = #". The partial derivative of radial
stress with respect to radial coordinate can be obtained
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from Eq. (9).
E)G“) o’ agx,gti+&z‘§zi_g u  udg,
ar Su at ar ar r o U2 o
ab ao.(n 1) ab ao.(u I}
+ol VA p toy Ny p, 0
" or or C o ar
. aa (g” “+AS,I-IL(IH +A€:w,m))__(€:n»n +A€:"‘["'7 +A€r\u.my)aag;,
- i(glllyl) + At +A€m»,m)_(8<n«n +A£IIL(/1)+A€_\'M‘.(Ir))ag12
3% ) ] 8 ) 2 o

10)

where the g and b are the elements of the matrices [G]
and [B], respectively, and they depend on the Young’s
modulus, Poisson’s ratio, irradiation creep coefficient,
Poisson’s ratio in irradiation creep, fluence increment, and
the 5 factor. Their mathematical forms appear in Appendix
A. Inserting Eq. (10) and the expressions for the radial and
tangential stresses in Eq. (9) into the equilibrium equation,
Eq. (6), gives the following second-order differential equation.

i+, ()

AN
o ror rf

where
a {n-1} thir) sw, () {n—-1) fhiny sw(n)
=3¢ (e + A + A )+g“, (s +AE) + Ay ™)
'
ao_(n 1) ao_(n )
_§4 ;3 3 »
or

ﬂ,, :;o( ("”-(»Ag”‘ n +A£m (m)+é‘ ( Ot +A£g"“'” +A8;w.(u))

G- Lo,
e _311+2gn‘2g21+ r g, ¢ wgu”zgzz_*_ ¥ g
1= v 6= ’
&n & or &n 8 or
L= & L L= b,
4T 5— s
&1 gu 8y
¢ _28|1_321+ r 0g, e _2312”322+ r dg,
6 ’ 7 El
& &, or £ &, or
‘= 2 b,, r él_)l_l’ Z,= -b, +Labu'
&1 gu or gn 8, or

Eq. (11) can be solved through a finite element method
using the Galerkin form of the weighted residuals procedure
[12]. In the finite element method, the shell is divided into
several finite elements in the radial direction as shown in
Fig. 3. Fig. 4 shows a two-node finite clement and its shape
functions expressed in a natural local coordinate system.
A local system of the equations can be obtained by integrating

1089



KIM et al., A Stress Analysis for a Coated Fuel Particle of AHTGR Using a Finite Element Method

Element ; 1) 2) (m) (M-1)
Node :1 2 3 e m m+1 M-1 M
Py § i } 4 i } 1 Py

(m) = m-th element
M = number of nodes
P=pressure (>0)

Fig. 3 Finite Element Divisions in a Single Layer

M = (1-9/2 N, = (1+8)/2 1

AL
S
D

& = natural coordinate
r = radial coordinate
N = shape function

Fig. 4. Notation and Linear Shape Functions in a Natural Local
Coordinate System

Eq. (11) over the interval in a finite element as shown in
Fig. 4 through the weak formulation in Appendix B.

-47rrf(a—u)
|y
f

or

l:eu elz:H“x}:
€ €xn |\# Azt (a"]
+

(12)

or

where

k=t

2 B ,
eij=z4”wk|:JLNi‘kNj4k+(2_§1,k)r;rNi.kNj.lc—;Z.k‘lkNl_kNjAk:|’ (13)
£

ﬁ=~i47[wkrk1k (rkﬂl‘k‘{'ﬂzk)Ni,k ’ (14

k=1
¥Vi=F (é k), Jk:J(é k), ]vi,k:]vi(é k), Ni=N, 1’(5 k),
é’m,k=§m(5k), Am,k:/im(ék),
i=1,2,j=1,2,and m=1,2.
The local equation, Eq. (12), should be assembled for
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all finite elements in a layer. Assembling Eq. (12) for all
finite elements of a single layer in Fig. 3 gives the following
equation.

e e 0 0 0 0
e e} +e? e 0 0 0 u,
0 eéf’ egu_el(i) e](;) 0 0 u,
o 0 S e R B PR
] 0 0 0 el ey
(n
Ju
—Arr} | —
or .
1
3}
W 3\ E
,f‘ o 4”’3(5“) ~dmr| =
Ve 2
D+ S 7/ N
= : + : (15)
M=), pM-D) M-D) -1
T 2 oY , {ou
oMb 47T — —4xr, | —
1 ar ), or ),
M- M-l
(-1
o ou
Axry | —
or ),
M

In the second vector of the right-hand side of Eq. (15),
the interior elements of the vector vanish because the two
derivatives of displacement with respect to the radial
coordinate are the same. The derivative of displacement
with respect to the radial coordinate is given from Eq. (9).

ou_ & o, f
T e 16)

where

f":“-ﬂ'rl ligrm—-l) +A€"_h'(") +A€:w.(n) +§3 (E;n-—lj +Aggz,(n) +A€;m(n))

B 4'50.;114):] .

The final form of a global finite element equation is
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obtained by inserting Eq. (16) into the derivative terms at
the nodal points 1 and M in Eq. (15) and replacing the
radial stresses at the nodal point 1 and M with the pressures
acting on the surfaces, respectively, i.e., 0,, = -P, and 0,
= -Px.

[V]{“}:{x}+{xp}, 17
where
el‘:"“‘”';;‘,l e:\zv 0 0 0 0
o THY L 0
v ¢ e A e o 0
0 0 0 "2'7;"2’ o ’2’;“e|‘;”’"" e{i‘; ”

0 0 - 0 0 ey e vann g,

{u}Tz{“w Y
{X}T :{f'lll)_f‘" f-'“7+/;‘2\ ./'1127+‘f;(3) e .le‘W‘2D+ﬁlhf"|l fz(M‘~|)+f';} s

{XF}T={51PL 0 - 0 "‘SMPR}’

5 =27

j

o 8Buy

The dimensions of matrix [V] are M x M, and the column
vectors {u}, {x}, and {xr} each have M x 1 dimensions.

Eq. (17) should be solved numerically because the
matrix [F] and the vectors {x} and {x;} include the radial
coordinates. The displacements can be obtained through
the successive substitution method [13]. This method
allows changing material properties in a layer according
to an irradiation and radial position through Egs. (13) and
(14) and, even better, it does not have any variations with
respect to an irradiation or radial position.

2.2 Multiple Spherical Layers

Fig. 5 shows the geometric finite element modeling
for multiple spherical layers under pressures at the leftmost
and rightmost surfaces. The fictitious springs between
the layers are drawn in Fig. 5 to express the mechanical

interactions between the layers easily. In Fig. 5, two nodes
connected with a fictitious spring always have the same
radial coordinates and displacements.

(18)

Upiry =Wy » £=

where

M(E):iMk.

k=1

(19)

Assembling Eq. (17) for all layers accomplishes the
following equation for the multiple layers.

[sH{u}={n}+{»}. (20)
where
V1" o] [0} ~ [o] " {x}‘i' {w}t’
CERR ER U  C I PRSPl U
O o} [ e el el
S P, Byt(ran D ~ugtrotyn Do
0 0 0
{w}" = A= cE=20 L1, )=
0 0 0
5M(|) 4 5,,,(;) q; _J‘&I(L) Fy

The dimensions of matrix [S] are M(L) x M(L), and the
matrices {u}, {4}, and {y} are M(L) x 1 column vectors.
In Eq. (20), the unknowns are the displacements {u} and
the interfacial radial pressures {g}. Egs. (18) and (20) can

Layer : (1) (L)

Element: (1) M,-1) 1) (M;-1)

Node :1 2 Mi-1 M 1 2 M-l M
L 1 | 1 } [

91

P = pressure (>0), g =contact stress

Fig. 5. Finite Element Divisions in Multiple Spherical Layers
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be assembled and rearranged so that the unknowns appear
in the left-hand side.

[s] [Z’]H{u}}z{{h}} {{h’}}
& et @b
where
ro 01 -1 0 0
(2]- 0 01 -1 0 0’
0 6 1 -t 0 0
[0 0 0 ]
0
“§M<1)
é‘M(l)ﬂ
0
[Z’]= '5?42 ,
Sy
0 0
—§M(Lvl)
JM(LAM
0
o o o |
{@' ={a @ — a.). (WY ={6R 0 — 0 -5,,R)

The dimensions of the matrices [Z] and [Z"] are (L-1) X
M(L) and M(L) x (L-1), respectively. The matrices [Z] and
[Z'] have the following elemental values, respectively.

1 forj=M(@), i=12,-,L-1
forj=M@)+1,i=12,--,L-1,
0 for others

z; =31

=

-8, fori=M(j), j=12,+,L~1
z,.}: 8, fori=M(j)+1,j=12,--,L—1.
0 for others

Eq. (21) is very similar to the usual contact equation
including the Lagrange multiplier [14]. The Lagrange
multiplier means the contact force acting on an interface.
The interfacial radial stress of Eq. (21) is equivalent to the
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contact stress in the contact analysis. Eq. (21) is nonlinear
for the displacements because the matrices [S] and [Z']
and the vectors {#} and {A'} contain radial coordinates.
The displacements and contact stresses can be solved
through the successive substitution method as in the case
of a single layer. The iteration is performed until the
maximum relative error of displacements or contact
stresses is less than or equal to a prescribed tolerance. The
left-hand side of Eq. (21) is asymmetric and very sparse.
LSLXG, a sparse linear solver of IMSL, or the Gauss-
Jordan elimination method can be used to solve the
asymmetric sparse system of equations [15,16]. For 8 =
0, the fluence increment in Eq. (21) is limited so that the
creep strain increment should not exceed one-half of the
total elastic strain for stable solutions [17]. For 5 > 0.5,
the solution is unconditionally stable but there exists a
fluence increment beyond which the solution becomes
inaccurate. To be just on the accurate side, the fluence
increment is controlled so that the creep strain increment
is less than the total elastic strain [18].

Eq. (12) calculates the derivative of displacement
with respect to the radial coordinate and Eq. (5) gives the
total radial and tangential strains. Eq. (8) computes the
stresses at the current fluence using the current strain
increments and the previous stresses. Eq. (21) can be
applied easily to any number of layers including a kernel
without further manipulation of the solution procedure.
Thus, we only need to change the number of layers. Eq.
(21) is valid for a CFP in which all the layers bond to
each other. If the layers separate from the other layers, a
separate system of finite element equations like Eq. (21)
should be set up for each separate system of the layers
and the appropriate contact conditions should be applied
to the separate layers.

2.3 Initial Conditions

The irradiation-induced dimensional change and
creep strain of the coating layers are zeros at the initial
step of irradiation. Applying Egs. (1)-(6) to a CFP at the
initial conditions gives the following second-order
differential equation.

du grom & o, A
ar2+r8r+r2u—&+r’ (22)

where

r_ody

{,"=2+L%, gy=-2+ ,
r d, or

d, d

J 1+v ag) 1-2v r od r od,

0 h i 8. o th th 11 oth 2 nih
= (g~ )b — b, A =2 - J g R e
A ar( . 6) I-v or l—v( " ") d, or d, or °
goep 1V J v

"o 12

G- = Eamnassy
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Similarly with Section 2.1 and 2.2, a global finite element
equation for the displacements and interfacial radial
stresses is obtained.

3. CALCULATIONS AND DISCUSSIONS

The data of a CFP for test calculations were extracted
from the IAEA CRP-6 benchmarking program for normal
conditions [19]. Table 1-3 represents the extracted
fabrication information, irradiation history, and material
properties for a CFP [20]. Case B was selected to evaluate
the effects of the cyclical pressure on the stresses of a
CFP. Case C was chosen to calculate the failure fraction
for the CFPs. Fig. 6 shows the internal pressures for Cases
A and B. Fig. 7 displays the radial and tangential irradiation-
induced dimensional changes of PyC for Cases A and B.
The PyC shrinks with irradiation in the radial and tangential
directions throughout the considered irradiation range.

Pressure (MPa)

30

25+

20+

15

Case A
— Case B

Table 1. Fabrication Data and Irradiation History for a Coated Fuel Particle

0 1

T

2

Fluence (1025 n/mz; E>0.18 MeV)

Fig. 6. Internal Pressures for Cases A and B

Parameters Case A Case B Case C
Kernel diameter, um 500 500 502+11
Buffer thickness, um 100 100 95+£14
IPyC thickness, pm 40 40 41£3
SiC thickness, pm 35 35 3542
OPyC thickness, pm 40 40 40+4
Kernel density, g/cm® 10.8 10.8 10.81
Buffer density, g/cm® 0.95 0.95 1.01
IPyC density, g/cm® 1.9 1.9 1.87
SiC density, g/em’ 3.20 3.20 3.20
OPyC density, g/cm? 1.9 1.9 1.87
IPyC BAFY 1.03 1.03 1.02
OPyC BAF 1.03 1.03 1.02
Irradiation duration , EFPD? 1000 1000 600
End-of-life burnup, % FIMA?® 10 10 20
End-of-life fluence, 10 n/m?*; E>0.18 MeV 3 3 54
#lrradiation temperature, °C 1000 600 to 1000 (10 cycles) 1025
“End-of-life internal pressure, MPa 26.20 Table 2 73.11
Ambient pressure, MPa 0.1 0.1 0.1

U Bacon Anisotropy Factor
» Effective Full Power Days
? Fissions per Initial Metal Atoms

¥ For Cases A and C, temperature is constant through time and constant throughout the particle. '
For Case B, temperature increases linearly from 600 to 1000 °C for each 100 day cycle and is constant throughout the particle.

* For Cases A and C, the internal gas pressure increases linearly with time from zero to the listed end-of-life value.
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Table 2. Internal Pressure for Case B

Fast Fluence Irradiation Duration | Internal Pressure
(10"n/m? E>0.18 MeV) (EFPD) (MPa)
0.00 0.00 0.00
0.29 96.67 0.14
0.30 100.00 0.02
0.59 196.67 0.94
0.60 200.00 0.04
0.89 296.67 2.59
0.90 300.00 0.07
1.19 396.67 4.87
1.20 400.00 0.10
1.49 496.67 7.64
1.50 500.00 0.14
1.79 596.67 10.79
1.80 600.00 0.20
2.09 696.67 14.26
2.10 700.00 0.26
2.39 796.67 17.99
2.40 800.00 0.33
2.69 896.67 21.96
2.70 900.00 041
2.99 996.67 26.13
3.00 1000.00 0.50
05
0.0 4 ---- Case A: Radial
——— Case A: Tangential
-0.54 -~ Case B: Radial
1.0+ Case B: Tangential
% 15
g -2.0- R T TP
vl
-2.5+
-3.04
-3.5
-4.0 T T
0 1 2

Fluence (10° /m’; E> 0.18 MeV)

Fig. 7. Radial and Tangential Irradiation-induced Dimensional

Changes of PyC for Cases A and B
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Throughout the calculation, it is assumed that the thermal
expansion of the coating layers occurs at a temperature
higher than the deposition temperature of the coating
layer, 1300 °C for PyC and 1500 °C for SiC [21].

The developed finite element method was implemented
into the HTGR fuel performance analysis code, COPA,
which is being developed at the Korea Atomic Energy
Research Institute [22]. The stresses calculated by the
present method were compared with those from a previously
developed mechanical analysis code, STRESS3 [23].
Figs. 8 and 9 present the tangential stresses at the inner

200

100
<
&
= COPA STRESS3
7 01 | PC— e :
w <4
8 2 | SiC ——  —o- b
= -100 &
P “
50 2 /Old
& 2001 % e

% o
=300 T T i
0 1 2 3

Fluence (10” n/m’; E > 0.18 MeV)

Fig. 8. Tangential Stresses at the Inner Surfaces of IPyC and
SiC for Case A

300

200+

100

COPA STRESS3
] PyC —— =i
SiC ——

Y, S

Tangential Stress (MPa)
-

Fluence (1025 n/mz; E>0.18 MeV)

Fig. 9. Tangential Stresses at the Inner Surfaces of IPyC and
SiC for Case B
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Table 3. Material Properties of PyC and SiC

Material properties PyC SiC
Elasticity, MPa 3.96 x10* 3.7 % 10°
Poisson’s ratio 0.33 0.13
. -4
Irradiation creep coefficient, Case A: 2.7 ><.10
[MPa-(10n/m? E > 0.18 MeV)]" Case B: Correlation (a)
Case C: 493 x 10°
Case A: 0.5
Poisson’s ratio in creep Case B: 0.5
Case C: 0.4

Irradiation-induced dimensional change rate, Case A: Comelation (b)

Case B: Correlation (¢)
AL/LY(10% n/m?% E > 0.18 MeV
I W o V)i Case C: Correlation (d)

Thermal expansion coefficient, K! 550 x 10° 4.90 x 10°
Mean strength, MPa 200 873
Weibull modulus 5.0 / 8.02

Irradiation-induced dimensional change rate and irradiation creep coefficient
Correlation (a) : K=4.386 X 10*-9.70 x 107T + 8.0294 x 10°7*
Correlation (b) :
&= 136334 x 107 ¢*-7,77024 x 10° ¢* + 2.00861 x 107 ¢ - 2.22642 x 107
£0"=-3.53804 x 10 ¢ + 1.69251 x 10° ¢ + 2.63307 x 107 ¢ - 1.91253 x 102
Correlation (c) :
& =4.03266 x 10 ¢7 - 2,25937 x 102 ¢2+ 9.82884 x 107 ¢ - 1.80613 x 10*
€8 =-4.91648 x 10* ¢* +2.32979 x 10° 4>+ 1.71315 x 107 ¢ - 1.78392 x 10~

Correlation (d) :

452013107 ¢’ ~8.36313x107 8" +5.67549%107 ¢* —1.74247 x 107 ¢

- for ¢ <6.08
£ =442.62692x 107 ¢~ 143234107
0.0954 for ¢>6.08
e = {1.30457>< 107¢° —2.10029x 107 ¢* +9.07826 X107 9 -3.24737x 107 for ¢ <6.08
~0.0249 for ¢ >6.08

where

K = Irradiation creep coefficient, [MPa-(10” n/m? E > 0.18 MeV)]*

&7 = Radial irradiation-induced dimensional change rate [(AL/LY{(10% n/m’ E > 0.18 MeV)]

&#” = Tangential irradiation-induced dimensional change rate [(AL/L)/(10* n/m® E > 0.18 MeV)]
T = Temperature in °C.

¢ = Fast fluence (10 n/m® E > 0,18 MeV)

surfaces of the IPyC and SiC layers for Cases A and B of 17 x 17. The 3 factor was set to 0.5. Stress results from
which were calculated by-COPA and STRESS3, respectively.  COPA and STRESS3 are in very good agreement in both
In these cases, the number of finite elements in a coating  cases. Fig. 9 shows the cyclic variations of the stresses
layer was set to 4 and the number of coating layers to 3. according to the cyclic internal pressure. Fig. 10 displays
Then the left-hand matrix of Eq. (21) has the dimensions  the tangential stresses at the inner surfaces of the IPyC
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-1004%

s
A
2
]
ot
A
= ’ Number of
::: -200+ finite elements
S . 4
GRS B 2
- SiC )

-400 . T T

0 1 2 3

Fluence (10" w/m’; E> 0.18 MeV)

Fig. 10. Tangential Stresses at the Inner Surfaces of IPyC and
SiC according to the Number of Finite Elements in Case A

Table 4. Failure Fractions and Computer Times for Case C

ng:rooliuMn:me SiC Failure Fraction I)CSEO??G’
104 4.80 x 107 84
10° 5.14x 103 842
107 520x10? 83707

Y A personal computer with Intel(R) Core(TM)2 Quad CPU of
2.66 GHz and 2 GB RAM was used.
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and SiC layers for Case A according to the number of
finite elements in a coating layer. The method produces
accurate stresses even when the number of finite elements
is one, the least number of finite elements. This means
that a small number of finite elements are sufficient to
calculate the failure probability of a batch of CFPs in the
present method. Table 4 presents the computer time taken
to calculate the failure fraction of the SiC layer due to only
a pressure vessel failure mechanism for the CFPs of Case
C using the COPA code. A quad core Pentium personal
computer was used in the calculation. The number of
finite elements in a coating layer was set to one. It takes
about 23.3 hours to perform 10’ Monte Carlo runs, where
the minimum failure fraction is 1 x 10”. The present
method is not practical for Monte Carlo runs of more
than 107 using a quad core Pentium personal computer.
In Fig. 8 or 10, the tangential stress of the inner
surface of IPyC rises to a high value at about 0.5 x 10%
n/m*; E > 0.18 MeV and then subsequently decreases.
Fig. 11 shows the tangential stresses at the inner surface
of the IPyC layer according to the deformation behavior
and the internal pressure at the early stage of irradiation.
The inner surface of the IPyC shrinks in the positive
radial direction due to irradiation. The shrinkage creates
a tensile stress in the tangential direction at the inner
surface of the IPyC. The irradiation-induced creep of the
IPyC relieves the stress. The internal pressure does not
greatly contribute to the stress generation in this early
stage of irradiation because it is low. Fig. 12 sketches the
tangential stresses of the inner surface of the SiC layer
according to the deformation behavior and the internal
pressure at the early stage of irradiation. The IPyC layer
pulls the inner surface of the SiC layer when it shrinks
under irradiation, which resuits in a compressive tangential
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/cq\ *
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Fig. 11. Tangential Stresses of IPyC Inner Surface according to Deformation Behavior and Internal Pressure in Case A
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Fig. 12. Tangential Stresses of S8iC Inner Surface according to Deformation Behavior and Internal Pressure in Case A
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Fig. 13. Radial Displacements of the Inner Surface of the IPyC
in Case A

stress for the inner surface of SiC. The trradiation-induced
creep of the IPyC relieves the stress acting on the SiC
too. Fig. 13 illustrates the radial displacements of the
inner surfaces of the IPyC according to the internal gas
pressure and the irradiation-induced shrinkage. The
irradiation-induced shrinkage of the IPyC generates most
of the radial displacement of the IPyC inner surface
throughout the irradiation. Fig. 14 shows the tangential
stresses along the radial position according to the number
of finite elements. The number of finite elements does
not affect the calculated results of tangential stresses
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Fig. 14. Variations of Tangential Stresses along the Radial
Position according to the Number of Finite Elements in Case A

along the radial coordinate. Maximum stresses occur at
the inner surfaces for all the layers.

4. CONCLUSIONS

A numerical method has been developed to perform
mechanical analyses for a CFP of a HTGR using a finite
element method. The solution procedure is very simple
and can be easily applied to the stress analysis for any
design of a CFP. Material properties in the layers of a
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CFP can be changed easily according to the time and
radial position. The stresses calculated by the finite
element method agreed well with the results from a
previously developed computer code. The irradiation-
induced dimensional change produces considerable stresses
on the coating layers and the irradiation-induced creep
relieves the stresses. The developed finite element method
generates accurate results even when the number of finite
elements is one, which means that a small number of
finite elements can be set to calculate the failure probability
of CFPs. The more improved finite element method will
include a contact analysis scheme which will make it
possible to analyze the mechanical behavior of separate
layers in a CFP.

APPENDIX A
The elements of the matrices [G] and [B]

Lit-v () priny in)
g =l g +BAFV K (1- 4}, g, =

;(V(m +BAS" K™ (>]

! 101
g3‘=7[E\ ,+ﬂA¢‘”K‘ ” ”), g:z=?(F+,3A¢"” K(’”)‘
where

X = (E ’+/3A¢”K”))[! + AP K”( ”rn)):l_z[Em+I3A¢wKn) (‘)~‘

-1

b..=g,.[E (1= B)ag K “]+g.[ 4

pi-
hu=2g,,[ = — +(l )A¢('” Kln»l)”(n‘h:l+g |: (l ﬁ)A#"K“V”(l /l“ l))}

E

(T3
by = ng[Em - —(1- B)Ag™ K¢ H’}Fg, [ o +(1-B)Ag" K""”y“"”],

An~d}

i) grinnd) , (n-1 1-v
b12=2gzxi: £ \y+(l ﬁ)A¢ K" ” "jI"'gzz{_—

o (1~ﬁ)A¢W K“"”(l—‘ll‘"'”):] .

APPENDIX B
Weak formulation of Eq. [11) through the Galerkin
method

When the solution of Eq. (11) is approximated, the
integral of the weighted residual vanishes over a finite
element interval.

(B.1)

o°u C‘ du
L‘P(ar r or

%u—ﬂl~%}d9=0.
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For a spherical finite element like Fig. 4, Eq. (B.1) becomes

f‘y(au {l du

e a ;2 J47n3dr= J‘:‘P(& +—/}2—) azridr. (B2)

In Eq. (B.2), the integrand including the second partial
derivative of displacement with respect to radial coordinate
can be transformed into the following equation by partial
integration.

[ 47rr2‘¥—g—dr—[47r ‘Pgﬂ[-—f[Mr %'?-Jrs;:rw)g“

r

(B3)
Inserting Eq. (B.3) into Eq. (B.2) gives Eq. (B.4).
I 4;z[r o u “H(2-g) ¥ ~§2qu
=[4zz 2y } j:\y rA, +A,)4xrdr (B4)

In the Galerkin method, the weighting function is set equal
to the shape function.

B.S5)

where i is a node number in a finite element. The approximated
displacement can be expressed in the summation of the
product of shape function and displacement at nodes.

(B.6)

u:ZNjuj,
7

where j is a node number in a finite element. In natural
coordinate system, Eq. (B.4) becomes

2
[147{’71\/;2 N, +(2-¢, )rNiZN;uj —g“ZJNiZNjuj]dé‘
J

=—4m}N,.(—1)[%’:-) +4mr?N,( 1)( ) [ 4z (rA+ )N, df
B.7)
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NOMENCLATURE

r Radial coordinate (m)

r. Radial coordinate of the leftmost surface (m)

rr  Radial coordinate of the rightmost surface (m)

7. Radial coordinate of the leftmost node in a finite
element (m)

r. Radial coordinate of the rightmost node in a finite
element (m)

u  Radial displacement (m)

E  Young’s modulus (MPa)

K Trradiation creep coefficient [MPa-(10*° n/m* E >
0.18 MeV)]!

. dr

J  Jacobian= dE’

L Number of layers,

M Number of nodes in a single layer = M,,

M, Number of nodes in layer &

M(!) Global node number of the last node of layer Z, M(0) =0

N Shape function

P, Pressure acting on the leftmost surface > 0 (MPa)

Py Pressure acting on the rightmost surface > 0 (MPa)

g  Interfacial radial stress between two adjacent coating
layers (MPa)

T Irradiation temperature (K)

Tspr Deposition temperature of a coating layer (K)

Greek Symbols

@  Thermal expansion coefficient (K™')
&  Total strain

€”  Irradiation-induced creep strain

U]
L
S

Irradiation-induced dimensional change
Thermal strain = @(7-T.,)

Poisson’s ratio in irradiation creep

Poisson’s ratio

Natural coordinate

Stress (MPa)

Fast neutron fluence (10°° n/m’; E > 0.18 MeV)
Weight of an integration point &

Weighting function

Volume of a finite element (m?®)

n—)m
&

D8 e TR

Superscripts

(n) n-th fluence step
() [-thlayer

Subscripts

r Radial direction
0 Tangential direction
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